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ABSTRACT 

Automatic detection of sea mines in coastal regions is difficult due to highly varying sea 

bottom conditions present in the underwater environment. Detection systems must be 

able to discriminate objects that vary in size, shape, and orientation from naturally 

occurring and man-made clutter. Additionally, these automated systems must be 

computationally efficient to be incorporated into Unmanned Aerial Vehicle (UAV) 

sensor systems characterized by high sensor data-rates and limited processing abilities. 

Commonly used noise filters largely depend on the window (or neighborhood) size, 

which makes the mine detection ineffective. Using the bi-dimensional empirical mode 

decomposition (BEMD) analysis, an effective, robust sea mine detection system can be 

created. A family of decomposed images is generated and applied to optical lidar image 

data (ROAR) supplied by Naval Surface Warfare Center, Panama City. These 

decompositions project key image features, geometrically defined structures with 

orientations, and localized information into distinct orthogonal components or feature 

subspaces of the image. Application of the BEMD method to the analysis on side scan 

sonar data is also provided.   

Accurate detection and classification of mines is time consuming and requires 

divers or Automated Underwater Vehicles (AUV) in the water. The navy continues to 

pursue more expedient methods in mine countermeasures, and with airborne lidar, a surf 

zone and landing zone can be quickly surveyed for possible mines. In the near surf zone, 

all possible mines can be quickly neutralized by dropping guided munitions, eliminating 

the need to send divers or AUVs to verify contacts. Still, the need for improved methods 

of detection and classification is needed. BEMD, a relatively new method of signal 

analysis developed about fifteen years ago, was tested on lidar imagery from the ROAR 

experiment to look for any improvements in detecting and classifying mines. 
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I. MINE WARFARE IN NAVAL OPERATIONS AND 
HOMELAND SECURITY 

A. BACKGROUND 

The naval mine is one of the most cost effective weapons in the naval force and is 

an efficient force multiplier (Ocean Studies Board, 2000).  An underwater minefield has 

the ability to bring a highly advanced and capable navy to a halt and deny access to 

territorial waters. A delay of days to weeks could provide the enemy with crucial time. In 

the Korean War, conflict offensive mining by communist forces immobilized U.S. naval 

amphibious forces for more than a week during the landing at Wonsan (Zwolski, 1998). 

Approximately 3,000 Russian-made contact and magnetic mines caused a fleet of 250 

ships to wait off the coast while 10 American minesweepers tried to sweep a clear 

channel through the minefield (Morison, 1995). Two minesweepers were destroyed and 

sunk, and many were damaged. Minesweeping operations took two weeks rather than the 

estimated one week, and as a result the amphibious forces’ window of opportunity was 

gone.  

“We have lost command of the sea to nation without a navy, using 
weapons that were obsolete in World War I and laid by vessels that were 
laid at the birth of Jesus Christ.” – Rear Admiral Smith, Commander, 
Amphibious Task Force, Wonsan, Korea, 1950.  

The cost in time and money to sweep a minefield is about ten times the cost of the 

mines. Damage per mine can cost at least 2,000 times as much. The USS Samuel B. 

Roberts (FFG-58) on escort duty during Operation Desert Storm was nearly sunk due to a 

mine strike. The ship underwent major repairs costing almost $90 million from a mine 

that cost $1,500 (Figure 1a). 
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Figure 1.   a) Cost of ship damage and cost of mine, b) attacks on U.S. Navy vessels since 

the Korean War (from Avery, 1998). 

Even in present times with advanced weapons and technology, the naval mine 

continues to be a standard and frequently used weapon. Since WWII, mines were the 

most-used weapon to carry out attacks on U.S Navy vessels (Figure 1b). The U.S. Navy 

currently has 14 mine countermeasure (MCM) ships commissioned and deployed 

throughout the world. These mine countermeasures ships are assets dedicated to 

detecting, classifying, and clearing mines. Organic mine warfare assets, which are 

combatant ships that are equipped with some mine countermeasure capability, due to 

MCM ships unable to be everywhere at all times. Transit of fleet assets into foreign 

waters or any littoral waters requires the surveying and clearing of mines, which 

depending on the density of the minefield and the number of minesweeping assets, can 

cause a significant delay of operations (Figure 2) as shown in the parabolic relationship, a 

dense minefield can take up to 160 days.  
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Figure 2.   The relationship of the risk of losing a ship based on the MCM effort in days is 

parabolic (after Holmes, 2006). 

 

This time is increased as the number of mine-like objects increases, as it requires 

minesweeping assets on location and investigation, then at which the objects is detonated 

or cleared as non-threat.  Of course the best MIW strategy is early interdiction and 

prevention of deployment, which is difficult because mines can be quickly and 

clandestinely deployed. The capability exists for searching and hunting of mines, but it is 

very time consuming.  

B. CURRENT MINE WARFARE THREAT 

With much of the navy’s efforts pushing to the littoral region, the timely and 

accurate detection of mines is even more important. The water column is shallower and 

more influenced by the environment which causes degradation of sensor performance.  

 
“The tactical advantage will probably depend not on who has the 

most expensive, sophisticated platforms – but rather on who can most fully 
exploit the natural advantages gained by a thorough understanding of the 
physical environment.” –Rear Admiral W.G. “Jerry” Ellis, U.S. Navy, 
Oceanographer of the Navy, 1999 
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Mines are not just a threat to our naval forces in foreign waters. Mines can be laid 

in our own waters, which would threaten not just naval and commercial vessels, but 

would threaten trade and economy. The patriotic sea diver incident in January 1980 was a 

terrorist threat incident which claimed that mines were laid in the Sacramento River, 

causing all shipping movement to stop. The threat caused a four-day halt to shipping 

while the USS Gallant intensely conducted mine hunting operations. The impact to 

merchant shipping was estimated to be around in the hundreds of thousands of dollars. 

Threats to major ports and waterways would cause even more significant economic 

impact. In 2005 more than $700 billion of goods passed through our nation’s ports. 

April 2004, Lake Ponchartrain, Louisiana, a suspicious floating bag was spotted 

by a tugboat operator and notified the Coast Guard. It turned out to be a waterborne IED, 

WBIED with a few pounds of explosives, encased in pipes with a timer. A dignitary was 

scheduled to take a campaign trip on the lake. With the success of the IED in recent 

conflicts, and the ease in which they can be made and deployed, improvised waterborne 

mines are a very credible threat. Our maritime security program now involves frequent 

port surveys and more law enforcement involvement.  
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II. MINE DETECTION 

A. DETECTION OF OBJECT VS ENVIRONMENT 

Successful detection of a mine depends on the complexity of the environment that 

it lies in: seabed features, natural and man-made, and clarity of the water. Flat ocean 

bottom environments are much more favorable for mine detection, and rough and rocky 

bottom type make detection much more difficult and more time consuming. Some bottom 

types are highly susceptible to change due to environmental effects. Sandy bottom types 

can be smooth one day and be rough on another day as ocean currents cause ripples on 

the bottom. Therefore the seabed in the littoral environment is highly complex and is a 

result of many environmental processes and human activities. The mine that is most 

difficult to detect is one that is at the bottom and buried, intentionally or naturally. The 

bottom of the ocean is affected by waves and other ocean processes, and can shoal and 

cover up bottom mines. Sediments can be transported by tides and currents. A re-survey 

of the same location can be quite different as the seabed terrain might have changed and 

other sediments which may be transported in. The characteristic of the seabed for U.S. 

Navy MCM is described in DBT values, which is determined by roughness, mine burial 

amount, and bottom composition.  

1.  Clutter 

Clutter is categorized by density (or amount per square nautical mile) of non-mine, 

mine-like bottom objects (NOMBO).A NOMBO has a high signal return in contrast to its 

environment just like mines, and makes detection of an actual mine more difficult. 

Clutter can be natural objects such as rocks or coral, or man-made objects. They can be 

put into the waters as ships dispose trash or large objects, or be brought in from a major 

storm or flood. Areas that are denser in shipping traffic are more susceptible to clutter.  

According to Naval Warfare Publication 3.15-41, clutter has three categories as described 

in Table 1. Clutter category 1 is described as low clutter, and has less than 15 NOMBOs 

per square nautical mile. Clutter Category 2, is described as medium clutter, and has with 
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15 to 40 NOMBOs per square nautical mile. Clutter Category 3, is described as high 

clutter, and has over 40 NOMBOs per square nautical mile. 

 
CLUTTER 

Category Description NOMBO/sq nm 
1 Low < 15 
2 Medium ≥ 15  to 40 
3 High  40 

Table 1.   Clutter categories from NWP 3.15-41 

2. Roughness 

Strong bottom currents in sandy littoral regions can cause the surface of that 

seafloor to change into a ridged texture, and the ridges can cause shadow zones. The 

height of the ridge above the seafloor is what determines the category of bottom 

roughness, as describe in the NWP 3.15-41, and is a measure of difficulty of mine 

detection. Shadow zones may cause contacts lying behind the ridge to be missed 

determined by the height of the ridge from the seabed. Higher roughness may cause 

mines to be hidden in the shadow zones behind these ridges which would require more 

survey time to cover the shadow zones. Roughness categories from NWP 3.15-41 is 

described in Table 2. Roughness category 1, described as smooth, rises less than 0.2 

meters above the seafloor. Roughness category 2, described as moderate, rises between 

0.2 to 0.3 meters above the seafloor. Roughness category 3, described as rough, rises 

more than 0.3 meters above the seafloor.  

 

ROUGHNESS 
Category % Description HEIGHT(M) 

1 < 5 Smooth < 0.2 
2 5 to 15 Moderate ≥ 0.2  to 0.3 
3  15 Rough  0.3 

Table 2.   Roughness categories from NWP 3.15-41 
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3. Burial 

Burial is the predicted amount burial of a mine due to the sediment moving 

around and settling back down. The type and thickness of the bottom sediment, the 

strength of the ocean dynamics, whether it is waves or ocean currents, play a factor in the 

chance of mine burial. Planning tools like MEDAL combine bottom type and thickness 

information from databases and oceanographic parameters to derive burial amount. 

Burial amount from NWP 3.15-41 is described in Table 3 describes burial category 1 as 

no chance of burial, category 2 as 0 to 10 percent burial, category 3 as 10 to 20 percent 

burial, category 4 as 20 to 75 percent burial, and category 5 as 75 to 100 percent burial. 

Complete burial would make the mine undetectable from a side-scan or bottom mapping 

sonar, and would require bottom profiling sonar survey which can penetrate into the 

seabed. 

 
BURIAL 

BOTTOM 
TYPE 

NUMBER PERCENT BURIAL 

Rock 1 0% 
Mud or Sand 2 ≥ 0%  to 10% 
Mud or Sand 3 ≥ 10%  to  20% 
Mud or Sand 4 ≥ 20%  to  75% 
Mud or Sand 5 ≥ 75%  to  100% 

Table 3.   Burial categories from NWP 3.15-41 

MEDAL offers up to date information on DBT as well as decision aids which 

allow for planning of MIW operations. As the environment becomes more complicated, 

detection becomes more difficult, therefore knowledge of the environment is essential in 

determining the time required to clear an area of mines. Clarity of the water is important 

as well for successful and timely mine detection. Noise is an always present factor in 

environmental data which must be dealt with. Resolution is also important to mine 

detection, with higher resolution, mine shape and features are more distinguishable. 

Rough seas will also make matters difficult in terms of safety and accuracy of data. 
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B. DOCTRINAL BOTTOM TYPE 

DBT values is what the operators use as their planning tool for MCM operations. 

The DBT values in Table 4 will give them a rough estimate as to the complexity of MCM 

operations. Category A is characterized by a sandy or muddy bottom with 0 to 10 percent 

burial, and smooth bottom surface. This is the easiest bottom environment in which to 

detect mines. Classification values increase as burial percentage becomes greater and as 

roughness becomes greater. The most difficult is category D, which is characterized by 

75 to 100 percent burial, indicates the most difficult bottom type. 

Knowledge of the environment in advance is important to successful MCM and 

survey operations. As DBT category may provide the operator an idea of difficulty and 

time required to complete the mission, knowledge of the ocean bottom characteristics like 

bottom composition, predicted burial amount, bottom roughness, clutter, ocean and 

environmental conditions also provide valuable information as to performance of sensors.   

 
Bottom 

Composition 
Predicted 

Mine 
Case 

Burial 

Bottom 
Profile 
Group 

Bottom 
Category 

 
 
 
 
 

Mud or Sand 

 
0 – 10 

 

SMOOTH A 
MODERATE B 

ROUGH C 
 

10 – 20 
 

SMOOTH A 
MODERATE B 

ROUGH C 
 

20 – 75 
 

SMOOTH A 
MODERATE B 

ROUGH C 
 

75 – 100 
 

 
ALL 

 
D 

 
Rock 

 
0 
 

SMOOTH A 
MODERATE B 

ROUGH C 

Table 4.   Doctrinal Bottom Type categories from NWP 3.15-41 
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C. CHANGE DETECTION ANALYSIS 

Change detection analysis is conducted as follows. A follow-on survey and prior 

survey of the same area are compared to image matches exactly that of an old survey 

image, then no new objects are present. If there are a few locations that are different, then 

there is a potential that these locations may have mines present. All the changed areas 

must be investigated, but the unchanged locations need not be investigated due to 

previous survey. Objects of interest in the previous survey are either mines that have been 

cleared or objects considered a nonthreat.  

 

D. SENSOR SYSTEMS 

1. Klein 5000 

The Klein 5000 side scan sonar was developed by L3 Communications for 

military and commercial use, and is approximately 2 meters long and weighs155 lbs. The 

Klein uses multi-beams at a frequency of 455 KHz to map the seafloor. The system 

allows for complete seafloor coverage of the survey area each swath will overlap. The 

newest Klein allows for tow speeds of up to 10 knots (L3 Communications, Klein 

Associates, Inc., 2009). This enables the survey vessels to spend less time at sea 

surveying which in turn saves money. The Klein 5000 is what NAVO ships are using for 

port surveys, whose data is input into EPMA to output bottom type information. 

2. NAVO ODEC BATHY-2000 

This bottom and sub-bottom profiler sonar is versatile and can penetrate into the 

ground to obtain sediment type and thickness. The acoustic sensor operates at 2 kHz – 6 

kHz and up to 23 dB and is towed under or behind a research vessel. It can operate as 

deep as 11,000 meters and can profile the bottom as deep as 100-200 meters. Other uses 

are for hazard and mining surveys, installation and maintenance of pipes and cables, 

dredging and geophysical surveys. Sediment classification data is used to make burial 

predictions.  
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3. AN/SQQ-32 

The AN/SQQ-32was developed and designed by Raytheon and is used onboard 

MCM class ships. This highly capable sonar allows MCMs to detect and classify objects 

both moored and at the bottom (Figure 3). Sensors onboard the minesweeper MCM class 

ships are used strictly for operational detection and not for bottom mapping. The data is 

not included in NAVO’s MIW database. 

 

 
Figure 3.   AN/SQQ-32 

4. ALMDS 

ALMDS is a laser emitting MIW sensor and was recently developed to be fitted 

on the MH-60S helicopter to detect, classify, and localize floating and near-surface 

moored mines. This system is a part of the overall LCS MIW package designed for quick 

assessment of mine threats in littoral waters, choke points and confined regions, and 

amphibious landing areas. The ALMDS pod is fixed onto the MH-60S via a bomb rack 

(figure 4) and is able to operate at high speeds for high search rates, and can operate day 

and night. 

LIDAR began with applications to topographic mapping of surfaces above water, 

and then it evolved with applications to underwater mapping of channels for bathymetry. 

Now it is applied to operational use for detection of mines in the upper layer of the 

oceans. LIDAR is limited only to the upper layers of the water. Another MIW sensor 

called the AQS-20 is a sonar sensor that is towed from a MH-60S to detect mines in the 

lower layers of the ocean and allows for complete coverage of the water column (figure 

4).  
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Figure 4.   LCS MIW package. b) ALMDS covers the surface waters to detect near surface 
and floating mines. 

E. ENVIRONMENTAL POST-MISSION ANALYSIS SYSTEM 

Scientists at the Naval Research Laboratory (NRL) developed the Environmental 

Post-Mission Analysis (EPMA) system for the mine warfare community to ensure data 

visible, available, and usable for war fighter, when needed and where needed, to 

accelerate decision-making. The system ingests and processes field data and formats it 

into products that can be used in analysis too land prediction models to allow informed 

and timely decision-making (Lin et al., 2009). 

The EPMA system has the capability to process environmental data with different 

formats such as converting raw side-scan sonar imagery (in proprietary format) to a 

common processing format, and then exporting it as a geo-rectified TIFF image. Each of 

these manifestations of the data has a specific purpose. To manage and integrate disparate 

data outputs, EPMA defines a unified, extensible data type (i.e., EPMA data type) system 

to help discriminate into what processes a data set can be fed.  

In this study, EPMA is used to produce bottom type information from the raw 

data collected from sensors. Doctrinal bottom type is a bottom type classification 

primarily used by the MIW operators for operational decisions for MCM missions. 

Further detailed information of seabed characteristics is also kept in a database at NAVO.  
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F. BACKGROUND AND PROBLEMS 

Unmanned Aerial Vehicle (UAV) is the key technology in reducing the dangerous 

work of surveying and clearing underwater mine fields. The ONR has the spiral 

development of the Coastal Battlefield Reconnaissance and Analysis (COBRA) system 

(Almquist, 2009): Block-1 (day-time operations, surface mines and obstacles, and 

detection in beach zones), Block-2 (night operations, detection in surf zones), and Block-

3 (buried mines, near real-time processing). The Rapid Overt Airborne Reconnaissance 

(ROAR) airborne 3D lidar system is the major component for COBRA Block-2. 

Technical UAV sensor for detecting minefields in the beach and surf zones is the key 

component in Block-3. Without automated detection and classification algorithms, all 

image data collected in all the three COBRA blocks must be reviewed by a human 

operator prior to marking and removing mine-like objects.  

The COBRA system will allow naval expeditionary forces to conduct airborne 

standoff reconnaissance and automatic detection of minefields in the surf zone and inland. 

COBRA will consist of three primary components—the COBRA Airborne Payload, the 

COBRA Processing Station, and the Tactical Control Software (TCS). The COBRA 

Airborne Payload will consist of a multi-spectral sensor system that will be placed on a 

UAV to conduct reconnaissance, detect minefields, obstacles, and camouflaged defenses. 

The Tactical Control Software that is loaded onto the UAV Ground Control Station will 

control the COBRA Airborne Payload. Analysis of the imagery collected by the COBRA 

Airborne Payload will be conducted at the COBRA Processing Station. The COBRA 

Processing Station includes a Tactical Exploitation Group Remote Work Station (TEG 

RWS) with enhanced algorithm processing. 

In COBRA block-2, the ROAR system will be developed to use an innovative Lite 

Cycles Incorporated (LCI) proprietary integrated scanner, detector, and telescope (ISDT) 

receiver architecture. The ISDT tightly couples all receiver components and lidar 

electronics to achieve the system compaction required for tactical UAV integration, while 

providing a large receiver aperture and a programmable scanning function for wide area 

search with temporally displaced multiple looks on the fly for clutter reduction (Figure 5). 

The ISDT incorporates a 128 x 128 3D camera using Readout Integrated Circuit (ROIC) 
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technology developed by an LCI teammate, an LCI-developed large-array range-gated 

ICMOS camera, and a precision rangefinder that incorporates technology from LCI's eye-

safe laser range-finder (ESLRF) product line. New processing algorithms for mine 

detection in the very challenging surf zone clutter (SZ) environment, which offer the 

potential for significant processing gains in comparison to the legacy approaches, are 

under development.  

 

 

Figure 5.   UAV mounted lidar search area 

G. IMPROVEMENTS ON CURRENT CAPABILITEIS 

The Office of Naval Research (ONR) is looking to improve detection, localization, 

and classification, and drift prediction of surface and near-surface drifting mines. 

Specifically they are making efforts to improve the Compact Modular Sensor and 

Processing Suite (CMSS) integrated into a tactical unmanned airborne vehicle (TUAV) 

which will also be able to provide in-situ information about the environment to predict 

mine drift trajectories. Also there is continued effort in the development of target 

recognition algorithms to provide detection, classification, and localization of near-

surface mines. Another effort is to have sensors configured to record environmental 

conditions such as surface waves, currents, optical properties of the water column, and 

more. 
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III. CURRENT NOISEFILTERING METHODS 

Detection of sea mines in coastal regions is difficult due to the highly variable 

sea- bottom conditions with uncertain underwater environment. Detection systems must 

be able to discriminate objects which vary in size, shape, and orientation from naturally 

occurring and man-made clutter. Usually, noise filtering technique is needed to locate the 

mines in various images from side-scan sonar, forward-looking sonar, LIDAR, and others. 

Linear and nonlinear filtering techniques are available.  Usually, the linear filtering is 

conducted in the frequency domain; and the nonlinear filtering is conducted in the spatial 

domain.  

Theoretical base of the linear filter methods (e.g., ideal filter, and Wiener filter) is 

the Fourier transform. Frequency domain is space defined by the values of Fourier 

transform and its frequency variables. Let x(i, j) represent an input image with (i, j) the 

pixel location, and size M ×N (i.e., i = 1, 2, …, M; j = 1, 2, …, N). X(u, v) be its discrete 

Fourier transform with (u, v) the frequencies.  The linear filtering is represented by the 

multiplication 

𝐺(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)𝑋(𝑢, 𝑣),                                            (1) 

where H(u, v) is called the filter function.  Different forms of H(u,v) lead to 

various linear filters such as ideal filter, and Wiener filter. The inverse discrete Fourier 

transform of G(u, v) gives the processed image g(k, l). The filter function H(u, v) always 

involves scales in frequency domain (or called threshold frequency or window size), 

which is user defined. The filtering quality depends on these frequency scales.  

The linear filtering methods have serious limitations when dealing with signals 

that have been created or processed by a system exhibiting some degree of non-linearity. 

Linear filters perform poorly if the signals change levels (e.g. due to patient motion), are 

corrupted by noises that is either heavy tailed (which means that the signal contain 

outliers), or signal dependent. 

Design of non-linear filters can follow many approaches since there is no single 

underlying theory on nonlinear filtering (Kuosmanen and Astola, 1997). Many nonlinear 
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signal processing methods have their origin in statistics. In fact, the median filter was first 

introduced in statistics for smoothing economical time series. It soon became evident that 

the median filter performs very well especially in image processing applications where 

sharp transitions are common. Another non-linear filtering approach that has received 

considerable attention, and for which much theoretical study has been conducted, is that 

of so-called rank-order filtering, a method whose filtering effect is obtained by rank-

ordering the input data. Rank-order filtering is also known as order-statistics filtering. 

The nonlinear filtering is conducted in the spatial domain, i.e., it directly operates on the 

pixels, 

𝑔(𝑘, 𝑙) = 𝑇[𝑥(𝑖, 𝑗)],                                                 (2) 

where T is an operator on x defined over some user-specified neighborhood of (i, 

j). The filtering quality depends on spatial scale of the neighborhood.  

      Figure 6a shows an image of a Manta mine (128×128 pixels).  This image is 

distorted by random noises (generated by MATLAB) with signal-to-noise ratio of 1/8 

(Figure 6b), which is used to test the performance of various filters. That is to say that 

Figure 6b shows the input image x(i, j). In this chapter, four popularly used noise filters 

(ideal, Wiener, median, order statistic filters) are used to illustrate a common weakness in 

noise filtering.   
(a)                                                           (b)

 

Figure 6.   (a) Image of the Manta mine (128X128 pixels), and (b) the distorted image by 
random noises (signal-to-noise ratio of 1/8) by MATLAB. 
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A. IDEAL FILTER 

Ideal filter is a linear filter with the filter function H(u,v) having the following 

features. The set of frequencies ω = (u, v) such that |𝐻(𝑢, 𝑣)|> 0 is called the pass-band 

of the filter. The set of frequencies such that |𝐻(𝑢, 𝑣)| = 0 is called the stop-band of the 

filter. Four types of ideal filters are available depending on the location of the stop-band: 

low-pass, high-pass, band-pass, and band-stop filters (Figure 7). The low-pass filter, 

𝐻(𝑢, 𝑣) = �1       �(𝑢 − 𝑢0)2 + (𝑣 − 𝑣0)2 < 𝑓𝑐
0                                          otherwise

�                          (3) 

is usually used as noise filter. Here, fc is the threshold frequency. The noise filtering 

largely depends on fc. For large threshold frequencies (fc> 12), the noise filtering is very 

poor (Figure 8). The amount of signal improvement as threshold value decreases is low, 

until threshold values reach 24.For small threshold frequencies (fc< 12), the filtering 

quality is better than large threshold frequencies (Figure 9). It clearly shows as the 

threshold lowers, smaller scale signals become filtered out and more large scale features 

remain. If the shape and feature of the object is known, one could see that strong signal 

returns in dark red appear at x=32 and x=100 in the fc = 12 which begins to show some 

similarity with the signal return of the manta mine in the original image, but the shape of 

the signal is not well defined. At fc =5, one can see that a more solid well defined shape is 

beginning to appear as a result of going into lower threshold, and shows strong similarity 

with the signal of the manta mine in the original image. At fc =2, the signal representative 

of the manta mine becomes completely filtered out. 

 

Figure 7.   Four types of the ideal filters. 
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Figure 8.   Noise filtration on Fig. 6b using the ideal filter (3) with large threshold 

frequencies (fc> 12).  The noises filtration depends on the threshold frequency. 
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Figure 9.   Noise filtration on Fig. 6b using the ideal filter (3) for small threshold frequencies 

(fc ≤12). The noise filtration depends on the threshold frequency. 

 

B. WIENER FILTER 

The Wiener filter is the least square solution to the problem of signal recovery in 

the presence of noise. Use of the least square error leads to the filter function H(u, v) of 

the Wiener filter 

𝐻(𝑢, 𝑣) = 𝑋(𝑢,𝑣)
𝑋2(𝑢,𝑣)+𝑆𝑛(𝑢,𝑣)/𝑆𝑥(𝑢,𝑣)

                                              (4) 

where (Sx, Sn) are the signal and noise power spectra. The noise power spectrum is fairly 

easy to get. If 𝜎𝑛2 is the noise variance at each pixel, then the noise power spectrum is 

given by   

                                            𝑆𝑛(𝑢, 𝑣) = 𝑀𝑁𝜎𝑛2                                                                              (5)  
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This noise variance may be known based on knowledge of the image acquisition 

process or may be estimated from the local variance of a smooth region of image. The 

signal power spectrum is a little more challenging in principal.  To get the signal-to-noise 

ratio Sx/Sn, the Wiener filter usually uses a pixel-wise statistics estimated from a local 

neighborhood of each pixel. The neighborhood can be any central symmetric shape, a 

round disc, a square, a rectangle, or a cross. The commonly used neighborhood is a 

square with size n×n (n is an odd number).  Figure 10 shows the performance of the 

Wiener filter (4) on the noisy image (shown in Figure 6b) with n values varying from 3 to 

33. At n=5 the signal of the manta mine does show slight similarity to the manta mine. 

Without knowing what to look for, the signal in the filtered image may not be obvious. At 

then=11the filtered image clearly shows two cone shapes side by side, forming a 

triangular shape, which has a strong resemblance to the manta mine in the original image. 

As the filter window becomes larger, smaller scale noise becomes filtered out. A larger 

filter window also causes a frame effect at the edge of the image due to filter window 

covering areas outside the image. But by n=17 the background starts becoming darker 

and results in a reduced contrast between object and environment. At n=33 the overall 

triangular shape of the object has been filtered and blurred to a point where it is nearly 

indistinguishable. 
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Figure 10.   Noise filtration using the Wiener filter (4) with various odd-numbers of 

neighborhood size (n×n) for the estimation of the signal-to-noise ratios. It is noted 
that the noise filtration largely depends on the value of n. 

D. MEDIAN FILTER 

Median filter is a nonlinear filter and more effective than convolution when the 

goal is to simultaneously reduce noise and preserve edges. Neighborhood averaging can 

suppress isolated out-of-range noise, but the side effect is that it also blurs sudden 

changes (corresponding to high spatial frequencies) such as sharp edges. The median 

filter is an effective method that can suppress isolated noise without blurring sharp edges. 

Specifically, the median filter replaces a pixel by the median of all pixels in the 

neighborhood: 

𝑔[𝑘, 𝑙] = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑥[𝑖, 𝑗]. (𝑖, 𝑗) ∈ 𝑤}                                    (6) 

where represents a neighborhood centered on location (k, l) in the image. The 

neighborhood w can be of any central symmetric shape, a round disc, a square, a 
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rectangle, or a cross. The pixel at the center will be replaced by the median of all pixel 

values inside the neighborhood. The commonly used neighborhood is a square with size n

×n (n is an odd number).  Large values of n are comparable to low-pass filters. Figure 11 

shows the performance of the median filter (6) on the noisy image (shown in Figure 6b) 

with n values varying from 3 to 33. The median filter at n=3 shows slight signal 

improvement through the noise, but still remains noisy. At n=11 two cone shapes come 

together in a triangular shape correlating to the manta mine in the original image. 

Window sizes larger than n=11 result in a decreased contrast of object and background. 

Although the median filter is able to effectively filter out noise and separate the object 

against the background, it results in less contrast of the mine shape from the background 

compared to the previous Wiener filter. 

 

Figure 11.   Noise filtration on Fig. 6b using the median filter (6) with various odd-number of 
neighborhood size (n×n). It is noted that the noise filtration largely depends on 

the value of n. 
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E. ORDER STATISTIC FILTER 

The order statistic filter is most common form of image filtering. It replaces a 

pixel by statistical features of all pixels in the neighborhood centered at that pixel. To use 

this type of filters, the noisy image is divided into blocks of pixels called windows, 

comprising n×n pixels, where n is an odd integer greater than 2. Appropriate statistical 

methods are then applied to the window to remove noise. These techniques are based on 

order statistics as the spatial values of every window are ranked and the median/mean of 

the ranked set is given as the output for further processing. Similar to the Wiener filter 

and median filter, the central pixel x[i, j] of neighborhood size n×n is assumed in the 

order statistic filter to be a corrupted pixel and is treated for noise removal. In that 

neighborhood, only K= (n2- 1) pixels, excluding the central pixel x[i, j], are processed to 

find are placement for x[i, j], The two-dimensional sequence of pixels is changed into 

one-dimensional, by taking the pixels left-to-right and top-to-bottom,  

     𝑤(𝑛) = [𝑥1, 𝑥2, … , 𝑥𝐾]                                             (7) 

These pixels are then arranged in ascending order as: 

𝑟(𝑛) = [𝑟1, 𝑟2, … , 𝑟𝐾]                                               (8) 

Now 

𝑔(𝑖, 𝑗) = �𝑟𝐾/2 + 𝑟𝐾
2+1

� /2;                                          (9) 

is the rank-ordered mean of the given window;   

                                                     𝑔(𝑖, 𝑗) = 𝑟𝐾                                                   (10)  

is the maximum filter; and 

𝑔(𝑖, 𝑗) = 𝑟1                                                    (11) 

is the minimum filter. This procedure is repeated for all pixels in the image using 

overlapping sliding window to de-noise the corrupted image and is treated for noise 

removal. Figure 12 shows the performance of the order statistic filter (10) on the noisy 

image (shown in Figure 6b) with various values of n (from 3 to 33). Order filter with a 
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window size of n=3 produces a signal image similar to the two previous filters, noisy, 

with the mine object very slightly distinguishable. At n=9 the triangular mine shape 

becomes apparent with the higher valued cone shapes becoming better defined at n=13. 

Higher window sizes results in further filtering of noise in the background up until n=17. 

Further filtering causes the contrast of the object to the background to be stronger, but the 

shape of the mine becomes more oblong and rounded and so further filtering beyond 

n=17 is not considered beneficial. 

 

 

Figure 12.   Noise filtration on Fig. 6b using the order statistic filter (10) with various 
neighborhood sizes n(3 to 33). It is noted that the noise filtration largely depends 

on the value of n. 
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F. WEAKNESS IN THE EXISITING NOISE FILTERS 

As described in this chapter, all the linear filters need window size or frequency 

threshold; and all the nonlinear filters need neighborhood size. The noise filtration largely 

depends on these sizes.  

Noise filters can effectively reduce noise to the point that objects can be 

detectable, but knowing when filtering is sufficient enough to separate object from 

background is difficult. Determining the effective threshold depends on the object shape, 

size, and signal strength, resolution of the image, noise type (random Gaussian, linear, 

nonlinear), and background features. The operator’s ability to distinguish the object from 

a filtered image is important, as some automated detection systems are designed to model 

detection methods performed by people, which always outperforms automated systems in 

terms of detection and false alarms. 

Effective noise filtering is needed and knowledge of the environment would allow 

operators to know how much filtering is required. Knowledge of sensor placement and 

height above the seabed gives us an idea of image resolution. Forecast winds, ocean 

roughness, and scattering objects in the ocean can be parameterized into a noise level that 

is to be expected in imagery. This can narrow the guess as to the window size and 

frequency threshold needed to effectively filter. Instead of producing eight filtered 

images with different thresholds, this can be reduced to half the amount. 

Lower computational time for mine detection algorithms and filters is the main 

goal. Many algorithms and filters exist and are used in various combinations to improve 

mine detection. 

  



 26 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 27 

IV.  EMPIRICAL MODE DECOMPOSITION 

In signal processing, filtering and decomposition of a signal has limitations when 

dealing with real world data and signals. Real life natural processes are never linear or 

stationary. Fourier methods apply well to stationary data, but it does not suffice in the 

decomposition of a signal that is nonlinear and nonstationary, as such in the littoral 

environment which is affected by many non-linear physical processes.  

A. EMPIRICAL MODE DECOMPOSITION 

Empirical mode decomposition (EMD) is a method of signal decomposition 

designed for application to nonlinear and nonstationary signals. And although it is 

relatively new and lacks a firm theoretical foundation, it has been successfully applied in 

many areas in signal analysis which Fourier analysis could not do. EMD is a data driven 

multi-stepped empirical process of decomposing a signal into various components called 

intrinsic mode functions (IMF), by using a technique called sifting.  

B. PROCESS OF DECOMPOSITION 

Huang el al. (1998) developed the empirical mode decomposition (EMD) to 

analyze nonlinear and non-stationary data and to filter out noises. EMD is a non-

parametric data-driven analysis tool that decomposes nonlinear non-stationary signals 

into Intrinsic Mode Functions (IMF). An IMF is a function that must satisfy two 

conditions according to the algorithm originally developed: (a) the difference between the 

number of local extrema and the number of zero-crossings must be zero or one; (b) the 

running mean value of the envelope defined by the local maxima and the envelope 

defined by the local minima is zero. The algorithm to decompose a signal into IMFs is 

then the following (Huang et al., 1998):  First, the local minima and maxima of the signal 

x(t) are identified. Second, the local maxima are connected together by a cubic spline 

interpolation (other interpolations are also possible), forming an upper envelope emax(t). 

The same is done for local minima, providing a lower envelope emin(t). Third, the mean of 

the two envelopes are calculated. 

m1(t) = [emax(t) + emin(t)]/2.                                            (12) 



 28 

Such procedure is shown in Figure 13. Fourth, the mean is subtracted from the signal, 

providing the local detail  

h1(t) = x(t) -m1(t),                                                    (13) 

which  is then considered to check if it satisfies the above two conditions to be an IMF. If 

yes, it is considered as the first IMF and denoted. 

x1(t) = h1(t).                                                        (14) 

It is subtracted from the original signal and the first residual, 

r1(t) = x(t) -x1(t) ,                                                   (15) 

is taken as the new series in step 1. If h1(t) is not an IMF, a procedure called “sifting 

process” is applied as many times as necessary to obtain an IMF. In the sifting process, 

h1(t) is considered as the new data, and the same procedure applies. The IMFs are 

orthogonal, or almost orthogonal functions (mutually uncorrelated). This method does not 

require stationarity of the data and is especially suitable for nonstationary and nonlinear 

time series analysis. An IMF is a function that satisfies the following two conditions: In 

the whole data set, the number of extrema and the number of zero-crossings must either 

be equal or differ at most by one. 

By construction, the number of extrema decreases when going from one residual 

to the next; the above algorithm ends when the residual has only one extrema, or is 

constant, and in this case no more IMF can be extracted; the complete decomposition is 

then achieved in a finite number of steps. The signal x(t) is finally written as the sum of 

mode time series xi(t) and the residual rm(t): 

1
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x t x t r t
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= +∑                                                   (16) 

where x1(t) has the highest temporal variability and xm(t) has the lowest variability.  The 
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show the filtration of high-frequency variability (or noises) from the signal x(t) with c1(t) 

filtering out of x1(t), c2(t) filtering out of x1(t) + x2(t), …, and cm(t) is rm(t).   

 
 

Figure 13.   Illustration of the EMD process with the blue curve denoting x(t), the two green 
curves representing envelopes of local maxima emax(t) and minima   emin(t), and 

the red curve referring to m1(t) = [emax(t) +  emin(t)]/2. 

C. STOP CRITERIA FOR SIFTING 

Although conditions were defined for an IMF, reaching the second condition may 

require many sifts, and thus could cause a loss in amplitude variation and physical 

meaning. Depending on the user, or time demands, the first IMF may just require one sift. 

The stopping condition imposed in Huang’s paper [Huang et al. (1989)] is to limit the 

standard deviation computed from two consecutive results in the sifting process: 

                    𝑆𝐷 = ∑ �ℎ𝑖,𝑘−1(𝑡)−ℎ𝑖,𝑘(𝑡)�2𝑡
∑ ℎ𝑖,𝑘−1

2 (𝑡)𝑡
,                                             (18) 

 

When the SD is less than the predetermined SD, the sifting process is stopped (Figure 

14c).   
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Figure 14.   a) Original signal (black), with upper (blue) and lower (red) envelopes, and the 

mean of the envelopes (magenta). b) result of the first sift, ℎ1.  c) eigth sift with 
mean st dev within stop criteria. d) first IMF. e) second IMF after 5 sifts. f) 

second IMF. g) signal decomposed into IMF 1-6 plus residual. 
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D. BEMD FOR NOISE FILTRATION 

EMD, which was developed initially for analyze time series applications, has also 

been applied to a two-dimensional space. A process called bi-dimensional EMD (BEMD) 

which involves a two-dimensional spatial application of the EMD. Liu and Luo (2010) 

compared results of the EMD applied filter to other filters applied to an acoustic image. 

Comparison of the signal to mean square error (S/MSE) and Pratt’s Figure of Merit 

(PFM) clearly showed that the EMD applied filter outperforms the rest in noise 

suppression. In this case the object is an airplane underwater and is much larger than a 

mine. Reduced resolution causes a reduction in filter capability. 

BEMD is a process similar to EMD, but is applied in two-dimensional space 

rather than a time signal. EMD is performed for each row and each column until the 

mean of the envelopes is within the prescribed standard deviation of 0.2 which result in 

the criteria for IMF 1. And sifting continues for each row and column until the number of 

modes designated by the program is met. MATLAB was coded to decompose an image 

into 4 modes. Application of the BEMD on the noisy image (shown in Figure 6b), the 

noisy image (6b) is decomposed into various IFMs,  

  𝑥(𝑖, 𝑗) = 𝑥1(𝑖, 𝑗) + 𝑥2(𝑖, 𝑗) + ⋯+ 𝑥𝑚(𝑖, 𝑗) + 𝑟𝑚(𝑖, 𝑗)                     (19) 

with variability from high at x1(i, j) to low at xm(i, j).  

 Figure 15 shows the step-by-step process to filter the noises: (1) taking 

away  highest varying x1(i, j) from x(i, j) and getting c1(i, j); (2) taking away  high 

varying x2(i, j) from c1(i, j) and getting c2(i, j); (3) taking away  x3(i, j) from c2(i, j) and 

getting c3(i, j); and (4) taking away  x4(i, j) from c3(i, j) and getting c4(i, j); … In c1(i, j), 

the outline of the Manta mine shape is barely noticeable. In c2(i, j), there is a definite 

contrast of stronger signals inside the outline shape denoted by red pixels, and weaker 

signal which do not have much red pixels. The image c3(i, j)  shows a significant 

improvement in clarifying the object. The Manta mine shape outline is much more 

distinguishable as a result of the smaller scale signals being filtered out. The image c4(i, j)  

improves from c3(i, j) in that the notch in the middle with weaker signal is better defined.  
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Figure 15.   Step by step noise filtration on Fig. 6b using BEMD: (a) c1, (b) c2, (c) c3, and (d) 
c4. It is noted that this method is very efficient to filter out noises. 
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V. BEMD FOR NAVY’S RAPID, OVERT, AIRBORNE, 
RECONNAISSANCE (ROAR) 

A. DESCRIPTION OF ROAR 

Under the Office of Naval Research's Organic Mine Countermeasures Future 

Naval Capabilities (OMCM FNC) program, Lite Cycles, Inc. (LCI) is developing an 

innovative and highly compact airborne active sensor system for mine and obstacle 

detection in very shallow water (VSW), through the surf-zone (SZ) and onto the beach 

(Almquist, 2009). The system uses an innovative LCI proprietary integrated scanner, 

detector, and telescope (ISDT) receiver architecture. The ISD tightly couples all receiver 

components and LIDAR electronics to achieve the system compaction required for 

tactical UAV integration while providing a large aperture. It also includes an advanced 

compact multifunction laser transmitter; an industry-first high-resolution, compact 3-D 

camera, a scanning function for wide area search, and temporally displaced multiple 

looks on the fly over the ocean surface for clutter reduction. Additionally, the laser will 

provide time-multiplexed multi-color output to perform day/night multispectral imaging 

for beach surveillance. New processing algorithms for mine detection in the very 

challenging surf-zone clutter environment are under development, which offer the 

potential for significant processing gains in comparison to the legacy approaches.  

The objective is to develop an innovative fast, high resolution 3-D flash LIDAR 

imager to detect targets in the surf zone (SZ) and very shallow water (VSW) from a 

Tactical UAV. In particular, a high resolution, high dynamic range, fast gate, high 

integration/sampling rate 3-D Flash LIDAR imager for underwater imaging 

The current 3-D Flash LIDAR imaging systems have shown the usefulness of 3-D 

imaging and many lessons have been learned such as the need for narrow gate widths and 

higher resolution. The ability to detect underwater targets in the SZ with a 3-D 

volumetric imaging system has been demonstrated. This effort is to develop a 3-D Flash 

LIDAR imager to detect targets in the SZ and VSW from a Tactical UAV. This 

development will require innovations at the chip level to achieve improved pixel count 

(100,000 pixels or greater), high number of narrow time samples (40 or more), faster gate 
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times (less than 3 nanoseconds), and better SNR. These advancements will provide 

airborne, ground-based, and sub-surface systems with imaging capabilities beyond those 

currently available all with reduced cost, size, weight, and power requirements. 

The ability to enhance detection of littoral zone targets would also be useful in 

natural disaster assessment and would also benefit coastal zone surveys, environmental 

assessments, and search and rescue systems. 

B. FT WALTONSURF ZONE EXPERIMENT 

1. Survey Environment 

ROAR experiment was conducted at Ft. Walton, Florida, around 30.383 N 86.817 

W. Lidar survey was conducted along the SZ parallel to the coastline. A shallow sloping 

seafloor is typical of Gulf Coast waters, yet surf zone is typically rough with significant 

nearshore processes. This location had a moderate amount of clutter in certain areas of 

the survey region.  

 

Figure 16.   ROAR Survey in the surf zone environment. Sampled images are numbered. 
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2. Survey Method 

Using the FLASH lidar imager, an altitude of 3000ft and speed of 70 knots was 

used throughout the survey. Night and day surveys were completed. Survey track was 

parallel along the coastline (Figure 16). 

3.  Survey Data 

The surf zone was sampled in cubes encompassed the horizontal and the vertical 

dimension (Figure 6). Vertical layers were determined by signal return by range gating. 

Horizontal area was 200 x 200 meters represented by a 128 x 128 pixel horizontal image, 

with horizontal resolution being 1.5 meters per pixel. The range gate had 44 levels, or 

frames, which is the lidar pulse returning to the camera in 44 different time sections, 

representing depth of the water column. Most of the levels were noisy signals unrelated 

to the seafloor with about only four levels that captured the seafloor. These levels were 

combined to form one image and then filtered through MATLAB. 

The HFT2Dsub function (Appendix B) was set up to filter only one level with 

TMN = 1, thus only the high wavenumber signals were removed. Further filtering of 

lower wavenumber signals may have provided better clarity of the object but was not 

performed due to time constraints which occur in a real operational environment. 

4. Findings 

After the signal was decomposed, the first IMF was observed to be a relatively 

noisy signal (Figure 17), with the bottom features only one or two pixels in size. This is 

taken from the survey track in Figure 16, numbered 3. Higher value returns from the lidar 

are shown scattered and many in the bottom left corner. IMF 1 and IMF 2 still show an 

abundant number of contacts on the seafloor. Bottom objects in the IMF 2 image appear 

larger in size at around 10 pixels, and for the most part correlate to the bottom objects in 

IMF 1. Moving on into higher modes, the size of the signal becomes larger and thus the 

signal is representative of larger scale objects, but can also be representative of smaller 

objects with have strong signal return. Features in the IMF 3 image are even larger scale 

and the two large contacts in the bottom left corner correlate with the strongest signal 
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return in the IMF 2 image. Strong signal returns appear in the higher IMF images 

possibly due to scattering effect. IMF 4 shows one object which stands out against the 

background and other objects. The residual image can be seen as the overall reflectivity 

of the seafloor that the objects lie on. The total of the IMF 1 – IMF 4 plus the residual 

gives us the original image. 

In figure 18, with the first IMF removed the signal of the bottom features are 

noticeably larger in size and stand out from the background more clearly. The presence of 

mine-like contacts is clear in the imagery with the first IMF filtered out. The sensor 

resolution was insufficient to provide clarification on features but does provide enough to 

determine that there is an object that is possibly mine-like. Appendix A shows before and 

after images of LIDAR imagery with IMF 1 filtered out similar to that in Figure18. 

NOTE: Some of the survey data had consistent impurities which were attributed to 

problems in the camera sensor. The along track resolution was further degraded due to a 

high velocity survey speed. Cross track resolution was 1.5 meters. 
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Figure 17.   ROAR lidar survey from top left to bottom right: Original lidar, IMF 1, IMF 2, 
IMF 3, IMF 4, Residual 

BEMD can also be applied to lidar imagery to filter out unwanted noise or 

unwanted small scale signals. The image with IMF 1 removed is the original image with 

the first IMF taken out, and it clearly shows improvement in defining bottom objects. 

About five bottom objects can be visually determined as significant, compared to the 

original, which appears to have over 15 objects speckled on the seafloor. There is also at 

x =40, y=20 one object which has a stronger signal return that the other objects of 

interest. Further filtering by removal of IMF 2 shows that there is clearly one object that 

20 40 60 80 100 120

20

40

60

80

100

120

Original

20 40 60 80 100 120

20

40

60

80

100

120

IMF 1

20 40 60 80 100 120

20

40

60

80

100

120

IMF 2

20 40 60 80 100 120

20

40

60

80

100

120

IMF 3

20 40 60 80 100 120

20

40

60

80

100

120

IMF 4

20 40 60 80 100 120

20

40

60

80

100

120

Residual



 38 

stands out. This corresponds to the same object at x=40, y=20. With IMF 3 removed, 

signals seem to somewhat represent objects on the seafloor, but the signal is larger scale 

and not well defined. Further filtering into the low band pass range causes removal of any 

clear definition of the object of interest, but it is shown here to demonstrate how BEMD 

decomposes a signal from high to low wavenumber. 

 

Figure 18.   ROAR lidar image from top left to bottom right: IMF 1 removed, IMF1/2 
removed, IMF 1/2/3 removed, IMF 1/2/3/4 removed 

Another lidar image taken from the same survey in Figure 16, numbered 4, shows 

the upper right corner of the image scattered with contacts (Figure 19). The original 

image shows some high signal return objects, but they do not contrast against the 

background well. IMF 1 also shows contacts scattered on the seafloor as well, with 10-15 

possible contacts, but objects in the image still lack significant contrast. IMF 2 shows 

about seven contacts which show red pixels in the center, those contacts are well defined 

and stand out against other contacts. IMF 3 shows two objects with black centered pixels 

locate around x=85 and y=100&120,  
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Figure 19.   ROAR lidar survey from top left to bottom right: Original lidar, IMF 1, IMF 2, 
IMF 3, IMF 4, Residual 

One of those two objects being the same object of interest in the IMF 2 image.  IMF 4 

shows larger scale contacts but at different locations not associated with the previously 

defined contacts. This is representative of a signal return related to background features. 

These stronger return spots in the higher IMF are not likely to be mine-like contacts. 

In Figure 20, with IMF 1 removed, seven mine-like contacts appear in the image 

as red pixels. Other mine-like contacts do appear but are weaker in signal strength. With 

IMF 2 removed the objects that appeared with the IMF 1 removed appear as larger scale 
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objects with slightly weaker signal return. Further filtering out of higher IMFs did not 

expose any more mine-like objects. 

 

 

Figure 20.   ROAR lidar image from top left to bottom right: IMF 1 removed, IMF1/2 
removed, IMF 1/2/3 removed, IMF 1/2/3/4 removed 

In all cases where EMD was performed on lidar imagery, filtering out just the first 

IMF is sufficient to produce an image that shows mine-like objects amplified against the 

background. Although there is still some noise and some clutter that has been left 

unfiltered, objects with higher signal return from the original image are preserved and 

show up on the filtered image as well defined objects in figure 21.  

The first original image taken from the survey track in Figure 16, numbered 2, 
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pixels are scattered throughout the image, causing clutter and also making detection of 

the stronger red pixel values more difficult. It appears as about a dozen objects In the 

EMD filtered image on the right hand side, about five objects in the bottom right hand 

corner stand out as significant objects. Higher value red pixels are shown to be larger in 

size and can be distinguished from the slightly lower value orange pixels to the right. 

Distinguishing the higher value objects in the original image is more difficult and would 

require more time. and appear to be much more than five objects. 

The second original image taken from the survey track in Figure 16, numbered 6, 

is nearly similar to the first original image in number of higher return signals, orientation 

and background. The EMD filtered image shows about five contacts which are 

significant. 

The third original image taken from the survey track in Figure 16, numbered 7, 

shows a darker background with most of the higher return signals in the upper right 

corner. There is also slightly less clutter which makes it a little bit easier to point out 

higher return values in the image. In the EMD filtered image, four to five objects stand 

out as significant mine-like objects. 

The fourth original image taken from the survey track in Figure 16, numbered 8, 

shows a seabed with what appears to be much less clutter, but it is because the return of 

these cluttered objects have less contrast with the background. The EMD filtered image 

shows two significant objects, near the center and near the bottom left.  

In all four of these EMD filtered images, contacts were hidden or masked in 

noise, but the contacts were small in size and difficult to visually detect. EMD allowed 

these significant contacts to be more visually detectable. 
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Figure 21.   Left: Original lidar images, and right: EMD filtered image with IMF 1 removed 
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With IMF 1 removed, higher value pixels become more evident and contrast 

against the background is improved compared to the original image in Figure 19. 

Histogram plots show the BEMD filtered image compared to the original image (Figure 

22, 23). Frequency of values range from 0 to around 10,000, and was plotted on a 

logarithmic scale. Values of each image were scaled down to a range of 0 to 1 in 1000 

bins.  

Figure 22 shows that frequency of values in the low range 0-100 are much higher 

in the original image compared to the BEMD filtered image. Frequencies of values in the 

mid and high range are higher in the BEMD filtered image compared to the original 

image. Values at the very high end from 800 to 1000 occur more often in the high BEMD 

filtered image than the original image. This correlates to the filtered image having a 

better representation of high value pixels in figure 17, which is related to a higher 

contrast of object against the background. 

Figure 23 also shows that frequencies of values in the low range 0-50 are much 

higher in the original image compared to the BEMD filtered image. Frequencies of values 

in the mid and high range are higher in the BEMD filtered image compared to the 

original image. Values at the very high end from 500 to 1000 occur more often in the 

high BEMD filtered image than the original image. This correlates to the filtered image 

having a better representation of high value pixels in figure 19, which is related to a 

higher contrast of object against the background. The difference between the filtered and 

unfiltered image is greater in this example. The number of contacts is much less in this 

image 
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Figure 22.   Original (blue) and IMF 1 removed (red) lidar imagery comparison for figure17 

 
Figure 23.   Original (blue) and IMF 1 removed (red) lidar imagery comparison for figure 19 
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VI. BEMD APPLICATIONS TO SIDESCAN SONAR 

A.  SIDESCAN SONAR DATA FROM KLEIN 5000 

1. Survey Environment 

Survey location was San Diego harbor for 2007 at the same location, and also 

Puget Sound, Bremerton, WA in 2009.  Sonar equipment used was the Klein 5000 towed 

sonar system. Both harbors are sufficiently protected from large scale open ocean 

processes. Figures 24 and 25 describe the bottom characteristics of the Klein 5000 

survey. 

a. San Diego harbor 

Clutter amount: 70% low, 30% high. Roughness: 70% low, 30% high. 

 

Figure 24.   a) Clutter and b) roughness for San Diego harbor survey area. High values in red 
and low values in green. 

b. Puget Sound 

Clutter amount: 40% low, 60% high. Roughness: 40% low, 60% high. 

 
Figure 25.   a) Clutter and b) roughness for Puget Sound survey area. High values in red and 
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low values in green. 

3. Survey Method 

Sensor was towed at a speed of 10 knots along the channel with some overlapping 

areas. 

4. Survey Data 

Raw sonar data was converted into a mosaic using NAVO’s EPMA 3.0 program, 

then converted into a JPEG image. Only survey areas with mine-like contacts were 

captured and analyzed for the study. The JPEG format data were input in to MATLAB to 

perform EMD through a function called HFT2Dsub. The output of the file was two IMF 

layers which were decomposed from the original image, only the first IMF was removed 

to avoid loss of the object’s signal. Stop criteria of s=0.2 was used. 

5. Findings 

Mine-like objects of significant size and circular shape remained detectable in the 

filtered dataset. Smaller mine-like shapes which may be assumed as false contacts had a 

reduced signal due to filtering. This filtering was able to show that smaller objects which 

is too small to be considered.  

6. Results 

Objects of interest or large objects in a low-noise or noise free environment are 

not amplified by EMD. It actually produces a blurring effect which has the ability to filter 

out smaller objects which could produce false alarms. Objects with 2 to 3 pixel.. 
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VII. SUMMARY 

Mines continue to be a viable threat to our fleet operations and homeport security. 

Ideally MCM operations should be conducted quick and efficiently. Lidar sensors being 

deployed on aircraft are allowing for faster surveys and clearance of the mine threat. The 

very shallow water and surf zone are difficult areas to survey due to many dynamic 

processes which create noise and inhibit sensor performance in detecting mines. BEMD 

filtering proves to be effective in the noise problem present in lidar imagery to amplify 

the object of interest. BEMD effectiveness could not be fully researched due to the low 

resolution of airborne lidar, a disadvantage that comes with conducting an expeditious 

survey.  

Knowledge of environmental conditions prior to survey is important as mine 

objects can be completely undetectable even after filtering due heavy sediment and 

turbidity in the water. This understanding can allow understanding of the operating 

ranges and conditions for the lidar sensor to perform detection of mines (V. T. Holmes, 

2003). The results of BEMD performed on lidar imagery are studied in this thesis only by 

qualitative measurements. A survey with observed surf conditions, sea state, surface 

currents, sediments, water depth, tidal data, and actual verification of bottom objects 

would provide good data to effectively measure filter capability of BEMD.  

BEMD computational time is higher than other methods, as the image is 

decomposed starting from the small scale and successively filtering out the larger scale 

features. In order to filter out noise for a high resolution image, filtering down to the 

larger scale is required, but for low resolution imagery as in the ROAR lidar data, the 

object is only a few pixels in size and requires only one or two layers to be removed.  

Applying BEMD to an image using a compiled executable program rather than 

MATLAB will also improve computational time. Spline method and stop criteria can also 

be adjusted for BEMD which would change the computational time. 

Sonar imagery from towed sensors is relatively minimal in noise, as the Klein 

5000 survey of San Diego and Puget Sound did not provide much noise for BEMD to 



 48 

filter. But the use of sonar in shallow and dynamic environments would produce 

nonlinear signals and noise which could be analyzed by BEMD. Side-scan sonar survey 

of the surf zone may not be an effective means of surveying, but worth conducting to 

investigate the effectiveness of filters in removing noise.  
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APPENDIX A. ROAR DATA EMD FILTERED FORT WALTON, 
FL LIDAR IMAGES 

Out of 53 images captured from the LIDAR sensor, 16 were free of serious data 

impurities. Image dimensions are 128 by 128 pixels. Original image (left column) is a 1.5 

meter per pixel image with a map orientation, with north and shallower water towards the 

top of the image. The EMD filtered image (right column) is the original image with only 

the first IMF filtered out. 
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APPENDIX B. MATLAB CODE FOR FILTERS 

A. BEMD ALGORITHM 

functionrsltf = HFT2dsub(data); 
 
% loading image data 
%load lena2.dat; 
% load lena2.mat; 
% image data size in one-dimension 
%N=111; 
[N,M]=size(data); 
TNM=4; TNM1=TNM+1; 
rsltd1=zeros(N,N,TNM1); rsltd2=zeros(N,N,TNM1,TNM1); 
% specify ensemble number 
%nesb=100; 
nesb=N-11; 
% decomposition in the first dimension and arrange the output 
for j=1:N 
disp(['j=',int2str(j)]); 
temp=data(j,:); 
rslt=eemdrow(temp,0.2,nesb,TNM); 
for k=1:TNM1 
rsltd1(j,:,k)=rslt(k+1,:); 
end 
end 
% decomposition in the second direction 
for k=1:TNM1 
for i=1:M 
disp([int2str(k),'   i=',int2str(i)]); 
        temp2=rsltd1(:,i,k); 
rslt=eemdcol(temp2,0.2,nesb,TNM); 
forkk=1:TNM1 
rslt2d(:,i,k,kk)=rslt(:,kk+1); 
end 
end 
end 
% combine modes 
for m=1:TNM1 
rsltf(:,:,m)=rslt2d(:,:,m,m); 
for k=m+1:TNM1 
rsltf(:,:,m)=rsltf(:,:,m)+rslt2d(:,:,k,m); 
rsltf(:,:,m)=rsltf(:,:,m)+rslt2d(:,:,m,k); 
end 
end 
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% Y: Inputted data; 
% Nstd: ratio of the standard deviation of the added noise and that of 
Y; 
% NE: Ensemble member being used 
% TNM: total number of modes (not including the trend) 
% 
functionallmode=eemdcol(Y,Nstd,NE,TNM) 
% find data length 
xsize=length(Y); 
dd=[1:1:xsize]'; 
% Nornaliz data 
Ystd=std(Y); 
Y=Y/Ystd; 
% Initialize saved data 
allmode=zeros(xsize,TNM+2); 
for iii=1:1:NE, 
    % adding noise 
temp=randn(xsize,1)*Nstd; 
    X1=Y+temp; 
    X2=Y-temp; 
    % sifting X1 
xorigin = X1; 
xend = xorigin; 
    % save the initial data into the first column 
allmode(:,1)=allmode(:,1)+xorigin; 
fornmode =2:TNM+1 
xstart = xend; 
foriter=1:10 
            [spmax, spmin, flag]=extremacol(xstart); 
            upper= spline(spmax(:,1),spmax(:,2),dd); 
            lower= spline(spmin(:,1),spmin(:,2),dd); 
mean_ul = (upper + lower)/2; 
xstart = xstart - mean_ul; 
end 
xend = xend - xstart; 
        % save a mode 
allmode(:,nmode)=allmode(:,nmode)+xstart; 
end 
    % save the trend 
allmode(:,TNM+2)=allmode(:,TNM+2)+xend; 
    %%%======================================================== 
    % sifting X2 
xorigin = X2; 
xend = xorigin; 
    % save the initial data into the first column 
allmode(:,1) =allmode(:,1)+ xorigin; 
fornmode =2: TNM+1 
xstart = xend; 
foriter=1:10 
            [spmax, spmin, flag]=extremacol(xstart); 
            upper= spline(spmax(:,1),spmax(:,2),dd); 
            lower= spline(spmin(:,1),spmin(:,2),dd); 
mean_ul = (upper + lower)/2; 
xstart = xstart - mean_ul; 
end 
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xend = xend - xstart; 
        % save a mode 
allmode(:,nmode) = allmode(:,nmode)+xstart; 
end 
    % save the trend 
allmode(:,TNM+2)=allmode(:,TNM+2)+xend; 
end 
% ensemble average 
allmode=allmode/NE/2; 
% Rescale mode to origional unit. 
allmode=allmode*Ystd; 
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% Y: Inputted data; 
% Nstd: ratio of the standard deviation of the added noise and that of 
Y; 
% NE: Ensemble member being used 
% TNM: total number of modes (not including the trend) 
% 
functionallmode=eemdrow(Y,Nstd,NE,TNM) 
% find data length 
xsize=length(Y); 
dd=[1:1:xsize]; 
% Nornaliz data 
Ystd=std(Y); 
Y=Y/Ystd; 
% Initialize saved data 
allmode=zeros(TNM+2,xsize); 
for iii=1:1:NE, 
    % adding noise 
temp=randn(1,xsize)*Nstd; 
    X1=Y+temp; 
    X2=Y-temp; 
    % sifting X1 
xorigin = X1; 
xend = xorigin; 
    % save the initial data into the first column 
allmode(1,:)=allmode(1,:)+xorigin; 
fornmode =2:TNM+1 
xstart = xend; 
foriter=1:10 
            [spmax, spmin, flag]=extremarow(xstart); 
upper= spline(spmax(1,:),spmax(2,:),dd); 
lower= spline(spmin(1,:),spmin(2,:),dd); 
mean_ul = (upper + lower)/2; 
xstart = xstart - mean_ul; 
end 
xend = xend - xstart; 
        % save a mode 
allmode(nmode,:)=allmode(nmode,:)+xstart; 
end 
    % save the trend 
allmode(TNM+2,:)=allmode(TNM+2,:)+xend; 
    %%%======================================================== 
    % sifting X2 
xorigin = X2; 
xend = xorigin; 
    % save the initial data into the first column 
allmode(1,:) =allmode(1,:)+ xorigin; 
fornmode =2: TNM+1 
xstart = xend; 
foriter=1:10 
            [spmax, spmin, flag]=extremarow(xstart); 
upper= spline(spmax(1,:),spmax(2,:),dd); 
lower= spline(spmin(1,:),spmin(2,:),dd); 
mean_ul = (upper + lower)/2; 
xstart = xstart - mean_ul; 
end 
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xend = xend - xstart; 
        % save a mode 
allmode(nmode,:) = allmode(nmode,:)+xstart; 
end 
    % save the trend 
allmode(TNM+2,:)=allmode(TNM+2,:)+xend; 
end 
% ensemble average 
allmode=allmode/NE/2; 
% Rescale mode to origional unit. 
allmode=allmode*Ystd; 
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function [spmax, spmin, flag]= extremacol(in_data); 
 
flag=1; 
dsize=size(in_data); 
N=dsize(1); M=dsize(2); 
dd=diff(in_data(:,1)); 
% find all the maximums 
ii=find(dd(1:end-1)>=0 &dd(2:end)<=0)+1; 
spmax=cat(2,ii,in_data(ii,1)); 
% Exten interpolate to two end 
spmax=cat(1,[1,in_data(1,1)],spmax,[N,in_data(end,1)]); 
if(size(spmax,1)>=4) 
    slope1=(spmax(2,2)-spmax(3,2))/(spmax(2,1)-spmax(3,1)); 
    tmp1=slope1*(spmax(1,1)-spmax(2,1))+spmax(2,2); 
if tmp1>spmax(1,2) 
spmax(1,2)=tmp1; 
end 
    slope2=(spmax(end-1,2)-spmax(end-2,2))/(spmax(end-1,1)-spmax(end-
2,1)); 
    tmp2=slope2*(spmax(end,1)-spmax(end-1,1))+spmax(end-1,2); 
if tmp2>spmax(end,2) 
spmax(end,2)=tmp2; 
end 
else 
flag=-1; 
end 
%  find all the minimums 
ii=find(dd(1:end-1)<=0 &dd(2:end)>=0)+1; 
spmin=cat(2,ii,in_data(ii,1)); 
% Exten interpolate to two end 
spmin=cat(1,[1,in_data(1,1)],spmin,[N,in_data(end,1)]); 
if(size(spmin,1)>=4) 
    slope1=(spmin(2,2)-spmin(3,2))/(spmin(2,1)-spmin(3,1)); 
    tmp1=slope1*(spmin(1,1)-spmin(2,1))+spmin(2,2); 
if tmp1<spmin(1,2) 
spmin(1,2)=tmp1; 
end 
    slope2=(spmin(end-1,2)-spmin(end-2,2))/(spmin(end-1,1)-spmin(end-
2,1)); 
    tmp2=slope2*(spmin(end,1)-spmin(end-1,1))+spmin(end-1,2); 
if tmp2<spmin(end,2) 
spmin(end,2)=tmp2; 
end 
else 
flag=-1; 
end 
 
if(M==2) 
spmax(:,1)=in_data(spmax(:,1),2); 
spmin(:,1)=in_data(spmin(:,1),2); 
end 
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function [spmax, spmin, flag]= extremarow(in_data); 
 
flag=1; 
dsize=size(in_data); 
N=dsize(2); M=dsize(1); 
dd=diff(in_data(1,:)); 
% find all the maximums 
ii=find(dd(1:end-1)>=0 &dd(2:end)<=0)+1; 
spmax=cat(1,ii,in_data(1,ii)); 
% Exten interpolate to two end 
spmax=cat(2,[1;in_data(1,1)],spmax,[N;in_data(1,end)]); 
if(size(spmax,2)>=4) 
    slope1=(spmax(2,2)-spmax(2,3))/(spmax(1,2)-spmax(1,3)); 
    tmp1=slope1*(spmax(1,1)-spmax(1,2))+spmax(2,2); 
if tmp1>spmax(2,1) 
spmax(2,1)=tmp1; 
end 
    slope2=(spmax(2,end-1)-spmax(2,end-2))/(spmax(1,end-1)-spmax(1,end-
2)); 
    tmp2=slope2*(spmax(1,end)-spmax(1,end-1))+spmax(2,end-1); 
if tmp2>spmax(2,end) 
spmax(2,end)=tmp2; 
end 
else 
flag=-1; 
end 
%  find all the minimums 
ii=find(dd(1:end-1)<=0 &dd(2:end)>=0)+1; 
spmin=cat(1,ii,in_data(1,ii)); 
% Exten interpolate to two end 
spmin=cat(2,[1;in_data(1,1)],spmin,[N;in_data(1,end)]); 
if(size(spmin,2)>=4) 
    slope1=(spmin(2,2)-spmin(2,3))/(spmin(1,2)-spmin(1,3)); 
    tmp1=slope1*(spmin(1,1)-spmin(1,2))+spmin(2,2); 
if tmp1<spmin(2,1) 
spmin(2,1)=tmp1; 
end 
    slope2=(spmin(2,end-1)-spmin(2,end-2))/(spmin(end-1)-spmin(1,end-
2)); 
    tmp2=slope2*(spmin(1,end)-spmin(1,end-1))+spmin(2,end-1); 
if tmp2<spmin(2,end) 
spmin(2,end)=tmp2; 
end 
else 
flag=-1; 
end 
 
if(M==2) 
spmax(1,:)=in_data(2,spmax(1,:)); 
spmin(1,:)=in_data(2,spmin(1,:)); 
end 
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B. MEDIAN FILTER 

function b = medfilt2(varargin) 
%MEDFILT2 Perform 2-D median filtering. 
%   B = MEDFILT2(A,[M N]) performs median filtering of the matrix 
%   A in two dimensions. Each output pixel contains the median 
%   value in the M-by-N neighborhood around the corresponding 
%   pixel in the input image. MEDFILT2 pads the image with zeros 
%   on the edges, so the median values for the points within  
%   [M N]/2 of the edges may appear distorted. 
% 
%   B = MEDFILT2(A) performs median filtering of the matrix A 
%   using the default 3-by-3 neighborhood. 
% 
%   B = MEDFILT2(...,PADOPT) controls how the matrix boundaries 
%   are padded.  PADOPT may be 'zeros' (the default), 
%   'symmetric', or 'indexed'. If PADOPT is 'zeros', A is padded 
%   with zeros at the boundaries. If PADOPT is 'symmetric', A is 
%   symmetrically extended at the boundaries. If PADOPT is 
%   'indexed', A is padded with ones if it is double; otherwise 
%   it is padded with zeros. 
% 
%   Class Support 
%   ------------- 
%   The input image A can be logical or numeric (unless the  
%   'indexed' syntax is used, in which case A cannot be of class  
%   uint16).  The output image B is of the same class as A. 
% 
%   Remarks 
%   ------- 
%   If the input image A is of integer class, all of the output 
%   values are returned as integers. If the number of 
%   pixels in the neighborhood (i.e., M*N) is even, some of the 
%   median values may not be integers. In these cases, the 
%   fractional parts are discarded. Logical input is treated 
%   similarly. 
% 
%   Example 
%   ------- 
%       I = imread('eight.tif'); 
%       J = imnoise(I,'salt & pepper',0.02); 
%       K = medfilt2(J); 
%       figure, imshow(J), figure, imshow(K) 
% 
%   See also FILTER2, ORDFILT2, WIENER2. 
 
%   Copyright 1993-2004 The MathWorks, Inc. 
%   $Revision: 5.18.4.7 $  $Date: 2004/08/10 01:40:54 $ 
 
[a, mn, padopt] = parse_inputs(varargin{:}); 
 
domain = ones(mn); 
if (rem(prod(mn), 2) == 1) 
    order = (prod(mn)+1)/2; 
    b = ordfilt2(a, order, domain, padopt); 
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else 
    order1 = prod(mn)/2; 
    order2 = order1+1; 
    b = ordfilt2(a, order1, domain, padopt); 
    b2 = ordfilt2(a, order2, domain, padopt); 
if islogical(b) 
        b = b | b2; 
else 
        b = imlincomb(0.5, b, 0.5, b2); 
end 
end 
 
 
%%% 
%%% Function parse_inputs 
%%% 
function [a, mn, padopt] = parse_inputs(varargin) 
iptchecknargin(1,4,nargin,mfilename); 
 
% There are several grandfathered syntaxes we have to catch 
% and parse successfully, so we're going to use a strategy 
% that's a little different that usual. 
% 
% First, scan the input argument list for strings.  The 
% string 'indexed', 'zeros', or 'symmetric' can appear basically 
% anywhere after the first argument. 
% 
% Second, delete the strings from the argument list. 
% 
% The remaining argument list can be one of the following: 
% MEDFILT2(A) 
% MEDFILT2(A,[M N]) 
% MEDFILT2(A,[M N],[Mb Nb]) 
% 
% Any syntax in which 'indexed' is followed by other arguments 
% is grandfathered.  Any syntax in which [Mb Nb] appears is 
% grandfathered. 
% 
% -sle, March 1998 
 
a = varargin{1}; 
 
charLocation = []; 
for k = 2:nargin 
if (ischar(varargin{k})) 
        charLocation = [charLocation k]; 
end 
end 
 
if (length(charLocation) > 1) 
% More than one string in input list 
    eid = 'Images:medfilt2:tooManyStringInputs'; 
    error(eid,'%s','Too many input string arguments.'); 
elseif isempty(charLocation) 
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% No string specified 
    padopt = 'zeros'; 
else 
    options = {'indexed', 'zeros', 'symmetric'}; 
 
    padopt = iptcheckstrs(varargin{charLocation}, options, 
mfilename, ... 
'PADOPT', charLocation); 
 
    varargin(charLocation) = []; 
end 
 
if (strcmp(padopt, 'indexed')) 
if (isa(a,'double')) 
        padopt = 'ones'; 
else 
        padopt = 'zeros'; 
end 
end 
 
if length(varargin) == 1, 
  mn = [3 3];% default 
elseif length(varargin) >= 2, 
  mn = varargin{2}(:).'; 
if size(mn,2)~=2, 
    msg = 'MEDFILT2(A,[M N]): Second argument must consist of two 
integers.'; 
    eid = 'Images:medfilt2:secondArgMustConsistOfTwoInts'; 
    error(eid, msg); 
elseif length(varargin) > 2, 
    msg = ['MEDFILT2(A,[M N],[Mb Nb],...) is an obsolete syntax. [Mb 
Nb]'... 
' argument is ignored.']; 
    wid = 'Images:medfilt2:obsoleteSyntax'; 
    warning(wid, msg); 
end 
end 
 
% The grandfathered [Mb Nb] argument, if present, is ignored. 
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C. ORDERED FILTER 

function B = ordfilt2(varargin) 
%ORDFILT2 Perform 2-D order-statistic filtering. 
%   B=ORDFILT2(A,ORDER,DOMAIN) replaces each element in A by the 
%   ORDER-th element in the sorted set of neighbors specified by 
%   the nonzero elements in DOMAIN.   
% 
%   B = ORDFILT2(A,ORDER,DOMAIN,S), where S is the same size as 
%   DOMAIN, uses the values of S corresponding to the nonzero 
%   values of DOMAIN as additive offsets. 
% 
%   B = ORDFILT2(...,PADOPT) controls how the matrix boundaries 
%   are padded.  PADOPT may be 'zeros' (the default) or 
%   'symmetric'.  If PADOPT is 'zeros', A is padded with zeros at 
%   the boundaries.  If PADOPT is 'symmetric', A is symmetrically 
%   extended at the boundaries. 
% 
%   Class Support 
%   ------------- 
%   The class of A may be numeric or logical.  The class of B is  
%   the same as the class of A, unless the additive offset form of  
%   ORDFILT2 is used, in which case the class of B is double. 
% 
%   Example 
%   ------- 
%   Use a maximum filter on snowflakes.png with a [5 5] neighborhood.  
This is 
%   equivalent to imdilate(image,strel('square',5)). 
%   
%       A = imread('snowflakes.png'); 
%       B = ordfilt2(A,25,true(5)); 
%       figure, imshow(A), figure, imshow(B) 
%   
%   Remarks 
%   ------- 
%   DOMAIN is equivalent to the structuring element used for 
%   binary image operations. It is a matrix containing only 1's 
%   and 0's; the 1's define the neighborhood for the filtering 
%   operation. 
% 
%   For example, B=ORDFILT2(A,5,ONES(3,3)) implements a 3-by-3 
%   median filter; B=ORDFILT2(A,1,ONES(3,3)) implements a 3-by-3 
%   minimum filter; and B=ORDFILT2(A,9,ONES(3,3)) implements a 
%   3-by-3 maximum filter.  B=ORDFILT2(A,4,[0 1 0; 1 0 1; 0 1 0]) 
%   replaces each element in A by the maximum of its north, east, 
%   south, and west neighbors.  
% 
%   See also MEDFILT2. 
 
%   Copyright 1993-2004 The MathWorks, Inc. 
%   $Revision: 5.17.4.6 $  $Date: 2004/08/10 01:41:00 $ 
 
[A,order,domain,s,padopt,msg] = ParseInputs(varargin{:}); 
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domainSize = size(domain); 
center = floor((domainSize + 1) / 2); 
[r,c] = find(domain); 
r = r - center(1); 
c = c - center(2); 
padSize = max(max(abs(r)), max(abs(c))); 
originalSize = size(A); 
if (strcmp(padopt, 'zeros')) 
    A = padarray(A, padSize * [1 1], 0, 'both'); 
elseif (strcmp(padopt, 'ones')) 
% padopt of 'ones' is for support of medfilt2; it is 
% undocumented 
    A = padarray(A, padSize * [1 1], 1, 'both'); 
else 
    A = padarray(A, padSize * [1 1], 'symmetric', 'both'); 
end 
Ma = size(A,1); 
offsets = c*Ma + r; 
 
% make sure that offsets are valid 
if ~isreal(offsets) || any(floor(offsets) ~= offsets) || 
any(~isfinite(offsets)) 
%should never get here 
    eid = sprintf('Images:%s:internalError', mfilename); 
    msg = 'Internal error: bad OFFSETS.'; 
    error(eid,'%s',msg); 
end 
 
if isempty(s) 
%ORDFILT2(A,ORDER,DOMAIN) 
  B = ordf(A, order, offsets, [padSize padSize] + 1, ... 
             originalSize, domainSize); 
else 
%ORDFILT2(A,ORDER,DOMAIN,S,PADOPT) 
  B = ordf(A, order, offsets, [padSize padSize] + 1, ... 
           originalSize, domainSize, s); 
end 
 
 
%%% 
%%% ParseInputs 
%%% 
function [A,order,domain,s,padopt,msg] = ParseInputs(varargin) 
 
A = []; 
order = []; 
domain = []; 
s = []; 
padopt = 'zeros'; 
msg = ''; 
 
iptchecknargin(3,5,nargin,mfilename); 
 
A = varargin{1}; 
order = varargin{2}; 
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domain = varargin{3}; 
options = {'zeros', 'ones', 'symmetric'}; 
% padopt of 'ones' is for supporting medfilt2; it is undocumented. 
 
if (nargin == 4) 
if (ischar(varargin{4})) 
    padopt = iptcheckstrs(varargin{4},options,mfilename,'PADOPT',4); 
else 
    s = varargin{4}; 
end 
 
elseif (nargin == 5) 
  s = varargin{4}; 
  padopt = iptcheckstrs(varargin{5},options,mfilename,'PADOPT',5);   
end 
 
% make sure that arguments are valid 
iptcheckinput(order,{'double'},{'real','scalar','integer'},mfilename, .
.. 
'ORDER',2); 
 
if ~isempty(s) 
if (~isa(A, 'double')) 
    A = double(A); 
end 
  iptcheckinput(A, {'double'}, {'2d','real'}, mfilename, 'A', 1); 
  s = s(find(domain)); 
  iptcheckinput(s, {'double'}, {'real'}, mfilename, 'S', 4); 
else 
  iptcheckinput(A, {'numeric','logical'}, {'2d','real'}, mfilename, 'A', 
1); 
end 
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D. WIENER FILTER 

function [f,noise] = wiener2(varargin) 
%WIENER2 Perform 2-D adaptive noise-removal filtering. 
%   WIENER2 lowpass filters an intensity image that has been degraded by 
%   constant power additive noise. WIENER2 uses a pixel-wise adaptive Wiener 
%   method based on statistics estimated from a local neighborhood of each 
%   pixel. 
% 
%   J = WIENER2(I,[M N],NOISE) filters the image I using pixel-wise adaptive 
%   Wiener filtering, using neighborhoods of size M-by-N to estimate the local 
%   image mean and standard deviation. If you omit the [M N] argument, M and N 
%   default to 3. The additive noise (Gaussian white noise) power is assumed 
%   to be NOISE. 
% 
%   [J,NOISE] = WIENER2(I,[M N]) also estimates the additive noise power 
%   before doing the filtering. WIENER2 returns this estimate as NOISE. 
% 
%   Class Support 
%   ------------- 
%   The input image I can be uint8, uint16, int16, double, or single.  The 
%   output image J has the same class as I. 
% 
%   Example 
%   ------- 
%       RGB = imread('saturn.png'); 
%       I = rgb2gray(RGB); 
%       J = imnoise(I,'gaussian',0,0.005); 
%       K = wiener2(J,[5 5]); 
%       figure, imshow(J), figure, imshow(K) 
% 
%   See also FILTER2, MEDFILT2. 
 
%   The following syntax is grandfathered: 
% 
%   J = WIENER2(I,[M N],[MBLOCK NBLOCK],NOISE) or [J,NOISE] = WIENER2(I,[M 
%   N],[MBLOCK NBLOCK]) processes the intensity image I as above but in blocks 
%   of size MBLOCK-by-NBLOCK.  Use J = WIENER2(I,[M N],SIZE(I),NOISE) to 
%   process the matrix all at once. 
 
%   Copyright 1993-2004 The MathWorks, Inc. 
%   $Revision: 5.18.4.6 $  $Date: 2004/08/10 01:46:55 $ 
 
% Reference: "Two-Dimensional Signal and Image Processing" by  
% Jae S. Lim, p. 548, equations 9.44 - 9.46. 
 
[g, nhood, noise] = ParseInputs(varargin{:}); 
 
classin = class(g); 
classChanged = false; 
if ~isa(g, 'double') 
  classChanged = true; 
  g = im2double(g); 
end 
 
% Estimate the local mean of f. 
localMean = filter2(ones(nhood), g) / prod(nhood); 
 
% Estimate of the local variance of f. 
localVar = filter2(ones(nhood), g.^2) / prod(nhood) - localMean.^2; 
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% Estimate the noise power if necessary. 
if (isempty(noise)) 
  noise = mean2(localVar); 
end 
 
% Compute result 
% f = localMean + (max(0, localVar - noise) ./ ... 
%           max(localVar, noise)) .* (g - localMean); 
% 
% Computation is split up to minimize use of memory 
% for temp arrays. 
f = g - localMean; 
g = localVar - noise;  
g = max(g, 0); 
localVar = max(localVar, noise); 
f = f ./ localVar; 
f = f .* g; 
f = f + localMean; 
 
if classChanged 
  f = changeclass(classin, f); 
end 
 
 
%%% 
%%% Subfunction ParseInputs 
%%% 
function [g, nhood, noise] = ParseInputs(varargin) 
 
g = []; 
nhood = [3 3]; 
noise = []; 
 
wid = sprintf('Images:%s:obsoleteSyntax',mfilename);             
 
switch nargin 
case 0 
    msg = 'Too few input arguments.'; 
    eid = sprintf('Images:%s:tooFewInputs',mfilename);             
    error(eid,'%s',msg); 
 
case 1 
% wiener2(I) 
 
    g = varargin{1}; 
 
case 2 
    g = varargin{1}; 
 
switch numel(varargin{2}) 
case 1 
% wiener2(I,noise) 
 
        noise = varargin{2}; 
 
case 2 
% wiener2(I,[m n]) 
 
        nhood = varargin{2}; 
 
otherwise 
        msg = 'Invalid input syntax'; 



 70 

        eid = sprintf('Images:%s:invalidSyntax',mfilename);             
        error(eid,'%s',msg); 
end 
 
case 3 
    g = varargin{1}; 
 
if (numel(varargin{3}) == 2) 
% wiener2(I,[m n],[mblock nblock])  OBSOLETE 
        warning(wid,'%s %s',... 
'WIENER2(I,[m n],[mblock nblock]) is an obsolete syntax.',... 
'Omit the block size, the image matrix is processed all at once.'); 
 
        nhood = varargin{2}; 
else 
% wiener2(I,[m n],noise) 
        nhood = varargin{2}; 
        noise = varargin{3}; 
end 
 
case 4 
% wiener2(I,[m n],[mblock nblock],noise)  OBSOLETE 
    warning(wid,'%s %s',... 
'WIENER2(I,[m n],[mblock nblock],noise) is an obsolete syntax.',... 
'Omit the block size, the image matrix is processed all at once.'); 
    g = varargin{1}; 
    nhood = varargin{2}; 
    noise = varargin{4}; 
 
otherwise 
    msg = 'Too many input arguments.'; 
    eid = sprintf('Images:%s:tooManyInputs',mfilename);             
    error(eid,'%s',msg); 
 
end 
 
% checking if input image is a truecolor image-not supported by WIENER2 
if (ndims(g) == 3) 
    msg = 'WIENER2 does not support 3D truecolor images as an input.'; 
    eid = sprintf('Images:%s:wiener2DoesNotSupport3D',mfilename);             
    error(eid,'%s',msg);  
end 
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E. IDEAL FILTER 

%Question No:5 
%IDEAL LOW-PASS FILTER 
 
function g = idealfilter(X,P) 
f=X; 
[M,N]=size(f); 
F=fft2(double(f)); 
u=0:(M-1); 
v=0:(N-1); 
idx=find(u>M/2); 
u(idx)=u(idx)-M; 
idy=find(v>N/2); 
v(idy)=v(idy)-N; 
[V,U]=meshgrid(v,u); 
D=sqrt(U.^2+V.^2); 
H=double(D<=P); 
G=H.*F; 
g=real(ifft2(double(G))); 
%imshow(f),figure,imshow(g,[ ]); 
end 
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