
WEIBULL DISTRIBUTION FOR THE GLOBAL SURFACE CURRENT SPEEDS 
OBTAINED FROM SATELLITE ALTIMETRY  

 
Peter C. Chu  

 

Naval Postgraduate School, Monterey, CA93943, USA  
(pcchu@nps.edu, tel: 831-656-3688, fax: 831-656-3686)  

 
 
 

ABSTRACT 
 
Near-real time ocean surface currents derived from satellite 
altimeter (JASON-1, GFO,   ENVISAT) and scatterometer 
(QSCAT) data on 1o ×  1o resolution for world oceans 
(59.5o S to 59.5o N)   are available online    as  “Ocean 
Surface Current Analyses – Real Time (OSCAR)”. The 
probability distribution function (PDF) of the current speeds 
(w), constructed from global OSCAR data from 1992 to 
2008, satisfies the two-parameter Weibull distribution 
reasonably well. Knowledge on PDF of w will improve the 
ensemble horizontal flux calculation, which contributes to 
the climate studies. 
 
Index Terms—Probability distribution function, Weibull 
distribution, OSCAR data, skewness, kurtosis  
 

1. INTRODUCTION 
 
The world oceans contribute significantly to the global 
redistribution of heat necessary to maintain the earth’s 
thermal equilibrium. Surface layer horizontal fluxes of 
momentum, heat, water mass and chemical constituents are 
typically nonlinear in the speed, so the space or time 
average flux is not generally equal to the flux that would be 
diagnosed from the averaged current speed. In fact, the 
average flux will generally depend on higher-order 
moments of the current speed, such as the standard 
deviation, skewness, and kurtosis. From both diagnostic and 
modeling perspectives, there is a need for parameterizations 
of the probability distribution function (PDF) of the current 
speed w (called w-PDF here).  
Recent study on the equatorial Pacific [1] showed that the w-
PDF satisfies the two-parameter Weibull distribution in the 
upper layer (0 – 50 m) after analyzing the hourly Acoustic 
Doppler Current Profiler (ADCP) data (1990-2007) at all 
the six stations along during the Tropical Atmosphere 
Ocean (TAO) project.  
Question arises: Can such a result (e.g., the Weibull 
distribution for the equatorial Pacific surface current speeds) 
be extended to global oceans? To answer this question, we 

use the 5-day Ocean Surface Currents Analyses – Real-time 
(OSCAR) data to construct the observational w-PDF for the 
global ocean surface circulation. Special characteristics of 
the statistical parameters such as mean, standard deviation, 
skewness, and kurtosis will also be identified.  
 

2. THE OSCAR DATA  
 
The near real-time surface current fields (OSCAR) are 
available for the world oceans from 60oN to 60oS on 1o× 1o 
grid to a broad-based user community via a web-based 
interactive data selection interface on a time base with 
exactly 72 steps per year (about 5 day interval) starting from 
October 1992. The velocity is automatically computed from 
gridded fields of surface topography and wind derived on 
the base of the Ekman dynamics from satellite altimeter 
(JASON-1, GFO,   ENVISAT) and scatterometer (QSCAT) 
vector wind data. See website: http://www.oscar.noaa.gov/ 
for detailed information.   
 

3. STOCHASTIC DIFFERENTIAL EQUATIONS  
FOR SURFACE CURRENTS 

 
Let (x, y) be the horizontal coordinates and z be the vertical 
coordinate. Vertically averaged horizontal velocity 
components (u, v) from the surface to a constant scale depth 
(h) of surface mixed layer are given by [1]  
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represent the residual between the Ekman transport and 
surface wind stress. Here, K is the eddy viscosity; f is the 
Coriolis parameter; ( ,x yτ τ ) are the surface wind stress 



components; and (UE, VE) are Ekman transports computed 
by  
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where ( ,u v ) are the vertically varying horizontal velocity 
components; and (ug, vg) are the geostrophic velocity 
components.  With absence of horizontal pressure gradient, 
e.g., ug = vg = 0,   Equations (1) and (2) reduce to the 
commonly used wind-forced slab model [2]. For the sake of 
convenience, we assume that the residual between the 
Ekman transports (UE,   VE) and surface wind stress does not 
depend on the horizontal current vector (u, v). Away from 
the equator, this approximation is similar to a small Rossby 
number approximation [3]. If the forcing ( ,u vΛ Λ ) is 
fluctuating around some mean value,  
    1 2( ) ( ) ,   ( ) ( )u u v vt W t h t W t hΛ = Λ + Σ Λ = Λ + Σ ,    (5) 
where the angle brackets represent ensemble mean and the 
fluctuations are taken to be isotropic and white in time: 
                        1 2 1 2( ) ( ) ( )i j ijW t W t t tδ δ= − ,                   (6) 

with a strength that is represented by Σ . Note that the 
Ekman transport is determined by the surface wind stress 
for time-independent case, and therefore the ensemble mean 
values of ( ,u vΛ Λ ) are zero,  

                        0,   0u vΛ = Λ = .                              (7)  
Substitution of (5)-(7) into (1) and (2) gives  
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which is a set of stochastic differential equations for the 
surface current vector. The joint PDF of (u, v) satisfies the 
Fokker-Planck equation, 
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which is a linear second-order partial differential equation 
with the depth scale (h) taken as a constant. Transforming 
from the orthogonal coordinates (u, v) to the polar 
coordinates (w, ϕ ) respectively the current  speed and 
direction,  
                          cos ,   sinu w v wϕ ϕ= = .                   (11) 
 The joint PDF of (u, v) is transformed into the joint PDF of 
(w, ϕ ),  
 ( , ) ( , ) ( , )p u v dudv p u v wdwd p w dwdϕ ϕ ϕ= = .         (12) 
Integration of (12) over the angle ϕ  from 0 to 2π yields the 
marginal PDF for the current speed alone,  
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For a constant eddy viscosity (K) at z = -h, the steady state 
solution of equation (10) is given by                                               
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where A is a normalization constant. Substitution of (14) 
into (12) and use of (13) yield the Rayleigh distribution 
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with the scale parameter a. The basic postulation of constant 
K may not be met always at the upper ocean. Hence we 
require a model that can meet the twin objectives of (a) 
accommodating Rayleigh distribution whenever the basic 
hypothesis (constant K) that justifies it is satisfied and (b) 
fitting data under more general conditions. This requirement 
is supposed to be satisfied by the Weibull probability 
density function, 
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where the parameters a and b denote the scale and shape of 
the distribution.  This distribution has been recently used in 
investigating the ocean model predictability [4] [5]. 
 

4. PARAMETERS OF WEIBULL DISTRIBUTION 
  

The four parameters (mean, standard deviation, skewness, 
and kurtosis) of the Weibull distribution are calculated by 
[6], 
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where Γ  is the gamma function. The parameters a and b 
can be inverted [7] from (17) and (18),  
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The skewness and kurtosis are computed by 
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which depend on the parameter b only [see (20) and (21)] 
for the Weibull distribution. The relationship between the 
kurtosis and skewness can be determined from (20) and 
(21).  
 

5. OBSERVATIONAL w-PDF 
 
The data depicted in Section 2 are used to investigate the 
statistical features of the global surface current speeds (w). 
The four parameters (mean, standard deviation, skewness, 
and kurtosis) can also be calculated from the observational 
data (w)  
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for the each grid point.  The mean, standard deviation, 
skewness, and kurtosis fields of w estimated from the 
OSCAR data are displayed in Fig. 1. Large values of 
mean(w) occur in the western boundaries such as in the 
Gulf Stream, Kuroshio, and Somali Current, Malvinas 
Current  and; secondary maxima in the equatorial zones 
especially in the western and central equatorial Pacific. 
Minima of mean(w) occur in the subtropical horse latitudes. 
The standard deviation of w is also large near the western 
boundaries and in the equatorial zones. In general, w is 
positively skewed in the most part of the global oceans and 
negatively skewed in the equatorial zones and Southern 
Ocean. The kurtosis field is much noisier than those of 
mean(w), std(w), or skew(w).  
The Weibull parameters (a, b) were calculated from 
mean(w) and std(w). The distribution of the parameter a 
over the global oceans (Fig. 2a) is quite close to the 
distribution of mean(w), i.e., with large values in western 
boundaries and equatorial zone. The distribution of the 
Weibull  parameter b is shown in Fig. 2b. Thus, a four-
parameter dataset has been established each location. The 
scatter diagrams were drawn for global oceans during all or 
different time periods. 

 
Figure 1. First four parameters of the surface current speeds 
calculated from the OSCAR data (1992-2007).  
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Figure 2.  Same as in Fig. 1, but for Weibull  parameters (a, b).  
 



We may use the relationships between skew(w) and  
mean(w)/std(w)  (representing the parameter b) and between 
the kurt(w)  and the skew(w) to identify the fitness of the 
Weibull distribution for observational w-PDFs.  The solid 
curve on these figures shows the relationship for a Weibull 
variable. Fig. 3 shows the kernel density estimates of joint 
PDFs of  mean(w)/std(w) and skew(w) for (left) January and 
(right) July OSCAR data from 1992 to 2008.  The contour 
intervals are logarithmically spaced. The thick black line is 
the theoretical curve for a Weibull variable. (bottom) Same 
as in top, but for the joint PDF of skew(w) and kurt(w).                    
For the observational surface w-PDF, the skew(w) is 
evidently  a concave function of the ratio mean(w)/std(w) 
(the same as the Weibull distribution), such that the 
theoretical function is positive for small values of this ratio 
and negative for large values. However, for the core of the 
kernel with the joint probability higher than 0.32,  
mean(w)/std(w)  is always less than 2.2 and skew(w) is 
always positive (Fig. 3, upper panes). Similarly, the 
relationship between skew(w) and kurt(w) in the 
observations is  similar to that for a Weibull variable  (lower 
panels, Fig. 3) with smaller kurtosis. The agreement 
between the moment relationships in the OSCAR data and 
those for a Weibull variable reinforces the conclusion that 
these data are Weibull to a good approximation.             
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Figure 3. (top) Kernel density estimates of joint PDFs of  
mean(w)/std(w) and skew(w) for (left) January and (right) July 
OSCAR data from 1992 to 2008.  The contour intervals are 
logarithmically spaced. The thick black line is the theoretical 
curve for a Weibull variable. (bottom) Same as in top, but for 
the joint PDF of skew(w) and kurt(w).                    
 

6. CONCLUSIONS  
 

This study has investigated the probability distribution 
function of the surface current speeds (w), using long-term 
(1992-2008) 5 day “Ocean Surface Current Analyses – Real 
Time (OSCAR)” (OSCAR) data; and theoretically, using a 
stochastic model derived using upper boundary layer 
physics. The following results were obtained. 

(1) Probability distribution function of the surface current 
speeds (w) approximately satisfies the two-parameter 
Weibull distribution.  In the upper ocean with a constant 
eddy viscosity K, the probability distribution function 
satisfies a linear second-order partial differential equation 
(i.e., the Fokker-Planck equation) with an analytical 
solution – the Rayleigh distribution (special case of the 2 
parameter Weibull distribution). 
(2) Four moments of w (mean, standard deviation, 
skewness, kurtosis) have been characterized. It was found 
that the relationships between mean(w)/std(w) and skew(w) 
and between skew(w) and kurt(w) from the data are in  
fairly well agreement  with the theoretical Weibull 
distribution for the upper (0 - 50 m) tropical Pacific for the 
whole period The OSCAR  data also show that the ratio 
mean(w)/std(w) is generally less than 2.2 and the skewness 
is generally positive for the whole global oceans.   
(3) The Weibull distribution provides a good empirical 
approximation to the PDF of w, which presents the 
possibility of improving the representation of the horizontal 
fluxes that are at the heart of the coupled physical–
biogeochemical dynamics of the marine system. 
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