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Plastic Localization Revisited

Maria Eugenia Marante
Faculty of Engineering, University of Los Andes, Tulio
Febres Cordero, Me´rida 5101, Venezuela
and Lisandro Alvarado University, Barquisimeto,
Venezuela

Julio Flórez-López
University of Los Andes, Tulio Febres Codero,
Mérida 5101, Venezuela

This brief note describes an alternative approach for the dem
stration of the localization criterion. In the new approach, th
criterion is not obtained in terms of the gradient jump, but
terms of the plastic multiplier jump. The new demonstration is
simple as the classic criterion in the loading/loading condition
but much simpler in the loading/unloading case. It is the opin
of the authors that this alternative approach is more conveni
for pedagogical purposes.@DOI: 10.1115/1.1636790#

1 Introduction
This short note does not contain new results about localizat

but a new and simpler way to present them. Specifically, this n
presents an alternative procedure to demonstrate the localiz
criterion. Originally, the localization analysis was expressed
terms of the jump of the rate displacement gradients,@1#. Under
loading conditions on both sides of the discontinuity surface,
demonstration of the localization criterion has the brilliant si
plicity of the classics. However, under plastic-loading/elas
unloading conditions, the demonstration is complicated,@2#.

In Ref. @3#, localization is analyzed by carrying out a spect
analysis of the characteristic tensor and explicit analytical res
for the critical bifurcation directions and the corresponding ha
ening modulus were obtained. Reference@4# also deals, as in@2#,
with localization in the case when the material follows differe
constitutive branches in the band and the material outside.

In this short paper, it is shown that the localization conditi

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1
2002, final revision, June 4, 2003. Associate Editor: E. Arruda.
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expressed in terms of the plastic multiplier jump can be dem
strated in a very simple way, as simple as the loading/loading c
of the Rudnicki and Rice demonstration, but that is equally va
for the loading/unloading case.

It is the opinion of the authors that this alternative approach
more convenient for pedagogical purposes.

Finally, the framework chosen for the demonstration of the
calization criterion is the one of plasticity. However, it is impo
tant to underline that the same procedure can be used in dam
mechanics. For instance, in the case of brittle behavior with
significant plasticity, the localization criterion can be expressed
terms of the damage jump~or the damage multiplier jump! instead
of the gradient jump. On the other hand, the use of only o
plastic multiplier limits the validity of the demonstration to th
case of smooth yield surfaces.

2 A Plasticity Model
Let us consider a plasticity model within the framework

infinitesimal strains. The elasticity law is given by

s i j 5Si jkl ~«kl2«kl
p ! (1)

whereS is the elasticity tensor with the usual symmetries and
remaining symbols in~1! have the conventional meaning. A yiel
function f 5 f (s i j ,ak)<0 is introduced to describe the elastic d
main in the usual way. The internal variablesak are hardening~or
softening! parameters. The plastic strain evolution law is obtain
from a plastic potentialg5g(s i j ,ak) in the customary way:

«̇ i j
p 5l

]g

]s i j
; l>0. (2)

The plastic multiplier is computed via the consistency conditio

H l50 if f ,0 or ḟ ,0

l.0 if f 50 and ḟ 50.
(3)

Finally, the internal variable evolution laws are written as

ȧk5lhk~s,a!. (4)

3 The Classic Localization Analysis of Rudnicki and
Rice

The localization analysis consists in the search of a partic
kind of solutions with strain rate discontinuities. Consider a so
with a discontinuity surface of normaln. The values of the vari-
ables in one side of the discontinuity are denoted by the su
script 1 and on the other side by the superscript2. The jump of

1,
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any variableX is denoted byiXi5X12X2. The Maxwell com-
patibility condition and the equilibrium across the surface
written as

i «̇ i j i5
1

2
~nipj1nj pi !; iṡ i j inj50 (5)

wherep is the jump of the normal derivative of the displaceme
rate. Let us assume that plasticity is active in both sides of
surface, i.e.,l1.0 andl2.0. Then, the jump of the stress ra
is given by

iṡ i j i5Si jkl i «̇kli2iliSi jkl

]g

]skl
. (6)

The consistency condition and the internal variable evolution la
lead to

i ḟ i5
] f

]s i j
iṡ i j i1

] f

]a i
hi ili50. (7)

The combination of~6! and~5! on one hand and~7! and~5! on the
other gives

~Si jkl njnk!pl2S Si jkl

]g

]skl
nj D ili50 (8a)

S ] f

]s i j
Si jkl nkD p12S ] f

]s i j
Si jkl

]g

]skl
2

] f

]a i
hi D ili50. (8b)

The classic localization analysis is carried out by computing
multiplier jump from ~8b! and introducing it in~8a!, then the
expression that defines the gradient jumpp is obtained:

~Ki jkl njnk!pl50; (9)

where

Ki jkl 5Si jkl 2
1

A
Si jab

]g

]sab

] f

]scd
Scdkl ;

A5
] f

]s i j
Si jkl

]g

]skl
2

] f

]a i
hi . (10)

Now, localization under the aforementioned conditions is o
possible if the matrixKi jkl njnk is singular.

4 Classic Localization Analysis in Terms of the Plastic
Multiplier

It can be immediately noticed that an alternative criterion c
be obtained in terms of the multiplier jumpili instead of the
gradient jumpp. The expression of the gradient jump from~8a! is

pl5~Si jkl nknj !
21Bi ili ; where Bi5Si jkl

]g

]skl
nj . (11)

Notice that the matrixSi jkl nknj is always invertible. Now intro-
ducing ~11! into ~8b! gives

Cili50; where C5A2
] f

]s i j
Si jkl nk~Scbalnanb!21Bc .

(12)

Therefore, localization is only possible ifC is equal to zero. Oth-
erwise, the multiplier jump must be equal to zero and so mus
the gradient jumpp. The conditions

C50 and det~Ki jkl njnk!50 (13)

must, of course, be equivalent.
A similar result to~13a! can also be obtained from the analys

of the problem in terms of the jump of the rate displacem
gradients~that is as in the previous section! by the computation of
a critical hardening modulus for localization~see@5#!.
284 Õ Vol. 71, MARCH 2004
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Localization Analysis Under the LoadingÕUnloading
Condition

The preceding localization analyses assumed loading condit
on both sides of the discontinuity surface. However, the hypo
esis l1.0 and l2.0 was never verified. Let us assume no
that localization occurs with loading on one side of the surfa
say the positive side, and unloading on the other side; i.e.,l1

.0 andl250.
The demonstration of the localization criterion, under these n

conditions, using the Rudnicki and Rice approach is more co
plicated. On the other hand, the generalization of the plastic m
tiplier approach is almost immediate. The stress rate on both s
of the discontinuity surface can be written as follows:

ṡ i j
15Si jkl «̇kl

1 2 l1Si jkl

]g

]skl
; ṡ i j

25Si jkl «̇kl
2 . (14)

That is

Ûṡ i j Û5Si jkl Û «̇klÛ2l1Si jkl

]g

]skl
. (15)

The consistency conditions, also on both sides of the surface

ḟ 15
] f

]s i j
ṡ i j

11
] f

]a i
hil

150; ḟ 25
] f

]s i j
ṡ i j

2,0 (16)

therefore

i ḟ i5
] f

]s i j
iṡ i j i1

] f

]a i
hil

1.0. (17)

The combination of~5! and~15! and the combination of~17! now
leads to

H ~Si jkl njnk!pl1S Si jkl

]g

]skl
nj Dl150

S ] f

]s i j
Si jkl nkD pl2S ] f

]s i j
Si jkl

]g

]skl
2

] f

]a i
hi Dl1.0.

(18)

The jump gradientp can be expressed again as a function of
plastic multiplierl1:

pl5~Si jkl nknj !
21Bil

1 (19)

and the inequality~18b! becomes

Cl1,0 (20)

whereC and Bi have the expression given in the previous se
tions. On the the other hand the plastic multiplier must be posi
l1.0. Thus, localization is only possible if

C<0. (21)

It can be seen that the condition~21! includes both cases: local
ization under the loading/loading and the loading/unloading c
ditions.

As indicated in the Introduction this is not a new result at
but a simpler way to obtain the mathematical proof of localizat
conditions under loading/unloading conditions. It can be inde
noticed that with this alternative approach the demonstration
localization conditions in cases, loading/loading and loadi
unloading, are equally simple.

6. Example
The termC does not correspond to the determinant of the m

trix Ki jkl njnk. This can be observed by considering a particu
case. For instance, letS be the isotropic elasticity tensor written i
terms of the elastic modulusE and the Poisson coefficientn. The
yield function f is expressed as a function of the Von Mises stre
seq as follows:
Transactions of the ASME
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f 5seq2syS 12
a

acr
D (22)

wheresy andacr are material parameters. The functiong is taken
equal tof andh is equal to one. Let us consider a uniaxial stre
condition. The determinant ofKi jkl njnk is now

det~Ki jkl njnk!5
1

2

~~12nl !
2Eacr2sy!E2

~Eacr2sy1syn
2!~11n!

(23)

and the value ofC is

C5
~12nl !

2Eacr2sy

acr
. (24)

It can be noticed that although the termC is not identical to
det(ki jkl njnk), both quantities become zero or negative under
same conditions. Under plane stress conditions both criteria
differs but given the same value of the vectorn too.
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The Three-Dimensional Analog of the
Classical Two-Dimensional Truss
System

Richard M. Christensen
Lawrence Livermore National Laboratory, University of
California, P.O. Box 808 L-356, Livermore,
CA 94551-9900 and Stanford University,
Stanford, CA 94305, Hon. Mem. ASME

The octet-truss lattice system of Fuller and examined by De
pande, Fleck and Ashby is here reasoned to be the most fu
mental form for a three-dimensional truss system, placing it as
three-dimensional analog of the classical two-dimensional tr
system. Useful applications may be possible from nanom
scales up to space station scales, in addition to the usual scale
interest in materials science.@DOI: 10.1115/1.1651090#

The octet-truss lattice system based upon the patent of F
@1#, describes an open cell, low-density material or structure
sustains loads by the direct axial deformation of the mate

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 25, 2002; final revision, September 19, 2003. Associate Editor: E. Arruda.
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members. Most low-density material forms support loads by
far less efficient bending mechanism, Roberts and Garboczi@2#.
Wicks and Hutchinson@3# have shown that the efficient truss a
tion can be profitably employed in a plate form. Deshpan
Fleck, and Ashby@4# have modeled and tested a three-dimensio
cellular material which is based upon the tetrahedral and octa
dral cells of Fuller@1# giving a truss effect. This truss-type actio
will now be elaborated, beginning with the much simpler case
the classical two-dimensional truss system.

The two-dimensional truss system is ubiquitous in its appli
tions. With members arranged in triangular form, it resists a
sustains loads through the ‘‘direct’’ action of the axial deformati
of its members. A continuous system of equilateral triangular m
terial cells has an effective or average Young’s modulus,E,
~Christensen@5# and Gibson and Ashby@6#!, given by

E5
1

3
cmEm

whereEm is the material Young’s modulus andcm is the volume
~area! fraction of the material relative to the total volume. Th
direct resistance behavior for triangular cells is in contrast w
that which occurs with the behavior for two-dimensional hexag
nal ~honeycomb! cells. The system of hexagonal cells has an
fective Young’s modulus given by@5,6#

E5
3

2
cm

3 Em .

Although both forms are isotropic in the plane, the hexagonal
form resists loads by the bending action of its members, and
effective Young’s modulus can be orders of magnitude sma
than that for the triangular truss form forcm

3 !cm which is the
assumed and normal range of application. Thus the equilat
triangular form provides the basic and highly efficient truss s
tem for two-dimensional applications. It is difficult to pinpoint it
origins, but it has been used for multitudes of centuries and a
classical concept, it ranks very highly. Now the basis for the thr
dimensional truss system will be discussed by taking a geome
symmetry approach.

There are five platonic solids~polyhedra!: the tetrahedron,
cube, octahedron, dodecahedron, and isocahedron. The first,
and fifth of these have faces defined by equilateral triangles
these three, there is only one known form that admits a per
space-filling type of packing. This is a particular combination
tetrahedral and octahedral solids. Thus, of the five regular s
forms, there are only two known methods of filling space:~i! the
obvious case of the packing of cubes and~ii ! the far from obvious
case of tetrahedra plus octahedra. Case~i! with material members
in simple cubical form is of no interest here, since in some sta
it only resists shear deformation by a bending mechanism. I
case~ii ! that will now be used to develop the three-dimension
type of truss system involving only the direct mechanism of m
terial resistance.

The unit cell is shown in Fig. 1 with a tetrahedron inscrib
inside a guiding cube in the manner shown. Next, three m
cubes are arranged in the same 1–3 plane as that in Fig. 1 an
with a common vertex~node! at the coordinate origin for the
inscribed tetrahedra. These four cubical forms have reflec
symmetry across each of their common planar interfaces. N
four more cubes with inscribed tetrahedrons are placed above
first four, with a form prescribed by reflection symmetry about t
common plane of the two groups of four cubes. This construct
now contains one complete octahedron in the center, surroun
by eight tetrahedrons, and with parts of other octahedrons aro
the periphery. This form is then extended in all three directio
Each face of a tetrahedron or octahedron mates with a face o
other. The edges of two tetrahedrons and two octahedrons m
to form a common edge. Eight tetrahedra and six octahedra m
at a node. Emanating from a node are 12 common edges in
-

004 by ASME MARCH 2004, Vol. 71 Õ 285
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directions. The overall region contains tetrahedra and octahed
a 2:1 ratio, and is completely space filling. The common ed
will now be interpreted as material members giving an open c
periodic system with material members of identical size. The
difference between the classical two-dimensional truss and
three-dimensional truss is that six material members meet a
interior node in two dimensions whereas in three dimensions
members join at a node. As shown, the entire structure is buil
from the tetrahedral unit cell.

Now, the mechanical properties problem can be approac
The tetrahedral unit cell in Fig. 1 is subjected to deformat
modes of uniaxial extension, shear, and dilatation. The resul
effective mechanical properties have cubic symmetry withE11
5E225E33, y125y235y31, and m125m235m31 for the Young’s
moduli, Poisson’s ratio’s, and shear moduli. These properties
analytically determined as

E11

Em
5

2&

3

A

L2 5
1

9
cm

y125
1

3

m12

Em
5

1

&

A

L2 5
1

12
cm

k

Em
5

2&

3

A

L2 5
1

9
cm

whereA is the area of the material member,L its length,cm the
~small! material volume fraction, andk is the effective bulk
modulus. All of the cubic properties are seen to involve the e
cient, direct mechanism of deformation as opposed to bend
Having cubic symmetry, these results are not isotropic. The de
of anisotropy can be easily established. Take axis 18 in a direction
making equal angles with the axes 1, 2, and 3 in Fig. 1. The te

Fig. 1 Tetrahedral unit cell
286 Õ Vol. 71, MARCH 2004
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transformation relation relating the uniaxial compliance in the8
direction to the compliance properties in the 1, 2, 3 coordin
system is

S11118 5
1

3
~S111112S112212S1212!.

Using this relation and the above results, the Young’s modulu
the 18 direction is found to be

E118

Em
5

1

5
cm .

Thus, the maximum to minimum Young’s moduli are in a 9:5 ra
which is not extreme and could even be used to advantag
particular problems. All of these results from the tetrahedral u
cell are consistent with those of Deshpande, Fleck, and Ashby@4#,
obtained from an octahedral unit cell.

A model of this three-dimensional truss system has been c
structed as shown in Fig. 2. The model is composed of the e
tetrahedral unit cells previously discussed. It consists of 36 in
vidual material members with a material volume fraction of abo
one half of 1%. One of the square ‘‘waists’’ of the octahedron
visible in the center of the model. The model physically demo
strates that the resistance to deformation is by the direct a
deformation mechanism. It has very high structural rigidity,
shear as well as in dilatation. The form in Fig. 2 is an example
a free-standing structure specified by this three-dimensional t
system. A different view of the Fig. 2 structure shows it to ha
the general shape of a cube with nodes at the corners and
centers of the faces~face-centered cubic!, but with none of the
material members having the directions of the cubical symme
axes. This generic structural unit could have wide utility.

Many three-dimensional truss type forms can be visualiz
such as one with hexagonal symmetry, but the one develope
Fuller @1# and analyzed by Deshpande, Fleck, and Ashby@2# is
likely to be the simplest in concept, analysis and construction
fact, it is here argued that this truss system is the logical thr
dimensional analog of the classical two-dimensional truss syst
The basis for this assertion is the following. This thre
dimensional truss form involving the direct mechanism for ma
rial resistance is the only system that can be derived from
geometrically basic, platonic solids, as shown above. In particu
the unit cell for the analysis of mechanical effects is that of
single tetrahedron. The tetrahedron is the three-dimensional
log of the equilateral triangle. The tetrahedron is the simpl
three-dimensional form that gains structural integrity by the dir
resistence mechanism of its material members. These ties bet
two-dimensional and three-dimensional features are at a c
pletely fundamental level of mechanical behavior and effect.

Fig. 2 Eight tetrahedral cells, 36 material members model
Transactions of the ASME
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Interesting applications could occur at all scales, up to v
large scales. For example, orbital space structures place a
mium upon a three-dimensional form that maximizes volume
minimum weight while preserving high structural rigidity. This
a prescription for a modular three-dimensional truss system
the other end of the scale, nano-engineering techniques may
day be used to assemble the present three-dimensional truss
using individual rigid molecules such as nanotubes to have a
small, very rigid building block essentially based upon the tet
hedral unit cell.

This work was performed under the auspices of the U.S.
partment of Energy by the University of California, Lawren
Livermore National Laboratory under Contract No. W-7405-En
48. This work was supported by the Office of Naval Research,
Y. D. S. Rajapakse, program manager.
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Contact Problem Involving Frictional
Heating for Rough Half-Space

Volodymyr Pauk1

Institute of Mechanics and Applied Informatics,
Technische Universita¨t Dresden, Dresden D-01062,
Germany

Plane contact problem of a punch sliding over a half-space
considered. The surface of the half-space is assumed to be r
and the roughness heights have the Gaussian distribution.
heat generation due to the friction is taken into account. T
problem is reduced to nonlinear integral equations which a
solved approximately. The effects of the frictional heating and
roughness on the contact size and on the contact pressure
presented. @DOI: 10.1115/1.1687793#

1 Introduction
When two bodies are in the sliding contact with a dry frictio

the heat is generated between them and the produced thermo
tic deformation may have a significant effect on the tribologi
behavior of the contacting materials. The solutions of this kind
problems can be found in many papers. The plane problem inv
ing the stationary heat generation for a half-space is first con
ered in@1,2#. The solution is obtained under assumption that
contacting surfaces are perfectly smooth. However, the real e
neering surfaces are covered with microscopic roughness. T
are many approaches modelling the surface roughness and s
ing its effect on the normal contact. The well-known Greenwoo
Williamson @3# method treats the roughness as spherical asper

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb.
2003, final revision, Sept. 30, 2003. Associate Editor: J. R. Barber.
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of uniform radius and random heights distributed over nomina
flat surface. The plane normal contact of rough cylinders invo
ing this model is presented in@4#.

The aim of this contribution is to study the phenomenon of
heat generation due to the friction between the rough surfaces
a model of roughness, the Greenwood-Williamson~G-W! ap-
proach is used and the frictional heating process is considere
be stationary. The method of solution is similar to that used in@4#
for the normal contact of rough elastic bodies.

2 Problem Formulation and Integral Equations
Let us consider the following contact problem. A parabo

punch is pressed by the normal loadP and slides inz-direction
with the constant velocityV over a half-space~Fig. 1!. Friction
forces due to the sliding punch produce the heat in the con
area (2a,a) and the heat source

q~x!52Vsyz~x!5 f Vp~x!, uxu,a (1)

~f is the friction coefficient,p(x) is the contact pressure,syz is the
friction force! flows into the half-space because the punch is m
of poor conductive material and can be considered as an insul
Free boundaries of the half-space are assumed to be also the
insulated. The heat generation process is considered as statio
and plane.

We assume that the punch surface is smooth while the h
space one is covered with microscopic asperities. The mode
roughness is that proposed by Greenwood-Williamson@3#. The
reader can find the details for this model in@3# or in the Johnson’s
book, @5#. According to the G-W model, the effective pressu
between rough surfaces is calculated as

p~x!5lhE
u~x!

`

@ t2u~x!#3/2f~ t !dt (2)

where l54/3EAB, 1/E5(12n1
2)/E11(12n2

2)/E2 , Ei , n i are
Young’s coefficients and Poison’s ratios of the contacting bod
B is the constant radius of spherical asperities,u(x) is the nominal
distance between the punch and the half-space,h is the density of
asperities, andf~•! is the probability density function of the as
perity height distribution, assumed to be Gaussian with the s
dard derivations

f~ t !5
1

sA2p
expS 2

t2

2s2D . (3)

The nominal separation between the contacting bodies dep
on the punch radiusR, elastic~due to the normal pressurep(x),
see@5#! and thermal~due to the heat source~1!, see@1#! displace-
ments. It can be calculated as

4,

Fig. 1 Contact geometry
MARCH 2004, Vol. 71 Õ 287
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u~x!5d1
x2

2R
2

2

pE E
2a

a

p~s!lnUs2x

s Uds

2
f Va1~11n1!

2K1
E

2a

a

p~s!us2xuds (4)

whered is the separation atx50, a1 , K1 are, respectively, the
thermal expansion coefficients and the conductivity for the h
space.

The Eqs.~2!, ~4! are the system of integral equations for t
problem solution. It is convenient to rewrite it in the normaliz
form. Introducing dimensionless variables, functions and par
eters

r 5
x

A2Rs
, j5

s

A2Rs
, d* 5

d

s
, c5

a

A2Rs
,

k5
p f Va1~11n1!EA2Rs

4K1
,

(5)

d5
8

3

hsARB

pAp
, u* ~r !5

u~x!

s
, p* ~r !5

A8R/s

pE
p~x!,

t5
t

s

we obtain the system of integral equations

u* ~r !5d* 1r 22E
2c

c

p* ~j!H lnUj2r

j U1kuj2r uJ dj (6)

p* ~r !5dE
u* ~r !

`

@t2u* ~r !#3/2 exp~2t2/2!dt. (7)

Now we need the presentation for the effective contact pres
within the contact nominal area. Numerical results for the con
of rough surfaces,@6#, shown that the effective pressure has a b
shape with the zero derivative at the contact area edges.
shape, which is due to the Gaussian distribution of aspe
heights, can be approximated by the following expression:

p* ~r !5p* ~0!F12
r 2

c2G 2

, ur u<c (8)

wherep* (0) andc are unknown maximum of the contact pre
sure and normalized contact size. Note that the similar prese
tion for the effective contact pressure is used in the correspon
elastic problem,@4#.

Substituting the presentation~8! into ~6! we obtain the new
form for the Eq.~6!:

u* ~r !5d* 1r 22p* ~0!@c f1~r /c!1kc2f 2~r /c!# (9)

where we have denoted

f 1~z!5E
21

1

@12t2#2 lnUt2z

t Udt

5
1

15
@3z5210z3115z18# lnu11zu

1
1

15
@3z5110z3215z18# lnu12zu

1
1

15
@18z226z4#

(10)

f 2~z!5E
21

1

@12t2#2ut2zudt5
1

15
@z625z4115z215#.
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3 Calculation and Results
The main difficulty in the solution of Eqs.~7!, ~9! is their non-

linearity. However, the approximate method of the calculat
proposed in@4# and used here gives a good accuracy and con
gence. It consists of the following steps:

1. For givenp* (0) the distanced* 5u* (0) is calculated from
Eq. ~7! at r 50, i.e.,

p* ~0!5dE
d*

`

@t2d* #3/2 exp~2t2/2!dt. (11)

The method of trial and error is used.

2. Assuming

p* ~r !50.5p* ~0!, (12)

we can solve the Eq.~7! by trial and error and find the value ofu*
as a function ofp* (0), which corresponds to this assumption.

3. For these values ofu* and p* (0), and r 50.541c ~what
corresponds to the assumption~12!, see Eq.~8!!, the contact size
c is calculated as a positive solution of the quadratic Eq.~9!.
Notice here that this step is different than that proposed in@4#.

4. For known values ofc andp* (0) we can calculate the load

P* 5
2P

pEs
5

2

pEs E
2a

a

p~x!dx5
16

15
cp* ~0!, (13)

the functionu* (r ) ~9!, and, finally, by a numerical integration o
~7!, the contact pressure distributionp* (r ).

Of course, the described procedure is approximate becaus
assumption~12! is used. However, it was shown in@4# that the
calculation error for the contact sizec due to this assumption is
small~,2%!. In addition, similarly to the method proposed in@4#,
we have compared the distributions of the effective contact p
sure obtained from the formulas~8! and ~7! where the function
u* (r ) is already known. We can conclude that the difference
tween these distributions is very small also in the case of th
moelastic problem. By this way, the choice of the presentation~8!
for the contact pressure is confirmed.

Fig. 2 Contact size and maximal normal pressure as functions
of load P* for dÄ0.3 and some values of k
Transactions of the ASME
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The aim of numerical calculation is to study the effect of fri
tional heating on the contact area size and on the contact pre
distribution.

Figure 2 shows the maximal contact pressurep* (0) and the
contact sizec as functions of the loadP* for some values of the
frictional heating ratiok. We see that for the isothermal cas
~k50! as well as for small values ofk ~k,2! the contact area size
c increases when the loadP* grows. When the frictional heating
is high ~k>2! we observe a significantly different tendenc
namely, the contact path shrinks if the load increases. Simu
neously, the maximum of the contact pressurep* (0) grows. This
growth is especially significant for the high frictional heatin
Physically this tendency means that for small values ofk, the
elastic deformation has the main effect on the solution while
thermal distortion dominates for high values ofk.

Figures 3~a,b! show the effect of the frictional heating on th

Fig. 3 „a… Load P* as function of parameter k for p * „0…Ä0.1
and some values of d; „b… contact size c as function of param-
eter k for p * „0…Ä0.1 and some values of d
Journal of Applied Mechanics
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load P* and on the contact sizec for some values of the rough
ness parameterd under assumption that the maximum of the co
tact pressure is fixedp* (0)50.1. We see that to obtain this fixe
pressure maximum, the smaller loadP* must be applied when the
frictional heating increases. In the same time, the contact area
c decreases.

The distributions of the contact pressurep* (r ) is shown in
Figs. 4~a,b! for two values of the loadP* and for some values o
the ratio k. Significant effects due to the frictional heating a
observed.

Fig. 4 „a… Distribution of contact pressure for dÄ0.3, P*
Ä0.05 and some values of k; „b… distribution of contact pres-
sure for dÄ0.3, P*Ä0.1 and some values of k
MARCH 2004, Vol. 71 Õ 289

cense or copyright; see http://www.asme.org/terms/Terms_Use.cfm



n

r

l

i

s
a

e

uc-
l is

ture
gi-
the
into

e-
s
. 1.
are

ion
equi-
a-
itu-
ples
A

the

ach

e

th.

l

oss
ach

com-

the
the

en-
e

cial

ted
ual

heir

ulus
cial
This
sign
ctly
mal

1

Downl
4 Conclusions
The contact problem involving simultaneously the surfa

roughness and the heat generation due to the friction is con
ered. The essential difference between pure elastic contact
that involving the frictional heating was observed. The presen
study can be considered as a model for the investigation of
tribological behavior of the real contact, which occurs frequen
in many engineering systems, particularly in brakes, during gri
ing and cutting processes.
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Peeling in Bimaterial Beams: The
Peeling Moment and Its Relation to the
Differential Rigidity

Thomas D. Moore
Analog Devices B.V., Raheen Business Park, Limerick,
Ireland and Thermomechanical Solutions,
Limerick, Ireland
e-mail: tmoore@thermomechanical.com

John L. Jarvis
Department of Mechanical and Aeronautical Engineerin
University of Limerick, Limerick, Ireland
e-mail: john.jarvis@ul.ie

Two-layer beams (i.e., bimaterials) under thermomechan
stress are prone to peeling or delamination at the free edges.
self-equilibrating peeling stress gives rise to a peeling mom
M p close to the free ends. A simple and exact formula for Mp is
presented in which the sign of Mp indicates whether the beam i
prone or resistant to delamination. The effect on both the sign
magnitude of Mp of the flexural rigidities of both layers is exam
ined. As the stiffness of one layer becomes dominant, the ma
tude of the differential rigidity converges to one-half the thickn
of the opposite layer.@DOI: 10.1115/1.1651092#

1 Bending Moments in a Bimaterial Beam
A review of prior work is provided in@1#. This present analysis

of bending in a bimaterial beam uses the work of Timoshenko@2#

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 2
2003; final revision, September 19, 2003. Associate Editor: M.-J. Pindera.
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as its foundation. It is convenient to use that work as an introd
tion, and in this section a brief summary of the relevant materia
made.

When a bimaterial beam is subject to a change in tempera
the two layers in general expand at different rates, but the lon
tudinal displacement at the interface must be identical because
layers are bonded together. Thus interfacial shear forces come
play to enforce the condition of identical longitudinal displac
ments. Within each layer, equal and opposite longitudinal forceP
arise in reaction to the interfacial shear forces, as shown in Fig
These forces acting through the neutral axes of the layers
statically equivalent representations of the longitudinal react
stresses that actually arise. They are necessary to maintain
librium of each layer in the longitudinal direction. The combin
tion of the interfacial shear force and the offset reaction long
dinal force within each layer generates the shear-induced cou
M1 and M2 shown in Fig. 1 which cause each layer to bend.
representative portion of the bimaterial beam remote from
ends is shown in Fig. 1.

Because the layers are bonded, the interfacial curvature of e
layer must also be identical. Timoshenko@2# derived the following
formula for the radius of curvature of the interface:

1

r
5

~a22a1!~ t2t0!

h11h2

2
1

2~E1I 11E2I 2!

h11h2
F 1

E1h1
1

1

E2h2
G (1)

where h1 and h2 are the beam thicknesses,a1 and a2 are the
coefficients of thermal expansion~CTE!, E1 and E2 are the
moduli of elasticity,I 1 and I 2 are the moments of inertia of th
upper and lower layer about their respective centroids, andt and
t0 are the final and initial temperatures of the beam of unit wid

Timoshenko also showed that the longitudinal forcesP1 andP2
are equal in magnitude so they were replaced with the symboP.
The magnitude ofP in a beam of unit width was given by

P5
2~E1I 11E2I 2!

~h11h2!r
. (2)

He analyzed the distribution of stresses in an arbitrary cr
section remote from the ends as in Fig. 1, and stated that for e
layer the longitudinal stresses can be expressed as a linear
bination of a central forceP, and a coupleM1 or M2 .

Timoshenko then turned his attention to the stresses near
ends of the beam. He examined the particular case where
Young’s modulus as well as the thickness of each layer were id
tical, i.e.,E15E2 andh15h2 . This latter condition meant that th
moment of inertia of each layer was also identical viz.I 15I 2 .
Also sinceh15h2 , the offset~i.e., the lever arm of the moment!
for each layer were identical, and thusM15M2 . Under these
conditions (E, I and M of each material identical! the shear-
induced moments were sufficient to produce identical interfa
curvatures for each layer.

Timoshenko acknowledged that in the general caseE1I 1 is not
equal toE2I 2 and the momentsM1 andM2 acting alone will not
be sufficient to cause identical interfacial curvatures. He sta
that the peeling stress distribution could be reduced to two eq
and opposite couples of such magnitude as to produce~with the
shear-induced couples previously considered! equal curvatures 1/r
at the interface.

In the following section these couples are examined and t
magnitude and sign are determined.

2 Peeling or Pinching Stresses at the Free Edge
Considering the more general case where the Young’s mod

and the thickness of each layer is different, then an interfa
normal stress exists close to the free ends as shown in Fig. 2.
normal stress is self-equilibrating, and consequently reverses
so that the normal forces arising from the positive area exa
offset those produced by the negative area. In Fig. 2 the nor
,
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stress is shown tensile~i.e., peeling! at the free edge and compres
sive inboard, although as fully discussed in@1# the opposite can
occur depending on layer geometries and material properties

In order for identical interfacial curvatures to be produced th
considering Figs. 1 and 2 the following equation must be satisfi
@1#:

M12M p

E1I 1
5

1

r
5

M21M p

E2I 2
. (3)

Reordering yields an expression for the coupleM p that arises
from the normal stress. This can be written as

M p5
h1h2~h2

2E22h1
2E1!

12~h11h2!r
. (4)

If M p as given by Eq.~4! is positive then the normal stress a
the free edge is tensile, i.e., peeling, whilst ifM p is negative, the
normal stress at the free edge is compressive, i.e., pinching. T
the sign ofM p indicates whether the beam is prone or resistan
delamination.

There are two factors which influence the sign ofM p as seen in
Eq. ~4!. One the sign of (h2

2E22h1
2E1) and the other is the sign o

r. From Eq.~1! it is evident that the sign ofr is determined by the
difference in CTEs of the materials and the sign of the tempe
ture change. Thus the sign ofr can be determined by inspection
it indicates whether the curvature is sagged with the center cur
downwards~positive!, or hogged with the center curved upward
~negative!.

The thickness and elasticity of each layer determine the sig
(h2

2E22h1
2E1). The sign of this expression can be found by

simple calculation. When its sign is the same as the sign ofr then
the peeling moment is positive, and the peeling stress at the
edge is tensile and prone to delamination. When its sign is op
site to the sign ofr then the peeling moment is negative, and t
peeling stress at the free edge is compressive, and resista
delamination.

Accordingly the nature of the peeling stress at the free end
a bimaterial beam can be found with one simple calculation wh
the layer properties and the temperature change are known.

Fig. 1 Loads on a representative segment of a bimaterial
beam remote from the ends „from Fig. 1 of Ref. †2‡…

Fig. 2 Tensile and compressive action of each layer on
the other in a bimaterial beam due to a uniform change in
temperature
Journal of Applied Mechanics
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The term (h2
2E22h1

2E1) holds the key as to how the layer prop
erties influence the likelihood of delamination. Ash2

2E2 ap-
proachesh1

2E1 in magnitude, the value of (h2
2E22h1

2E1) ap-
proaches zero. Whenh2

2E25h1
2E1 the shear-induced couples a

sufficient to induce identical interfacial curvatures. The peel
stress is zero because an additional bending moment is
needed.

The peeling momentM p is closely related to the differentia
rigidity m, defined as (h2D12h1D2)/@2(D11D2)#, whereD is
the flexural rigidity. This term was used by Suhir@3,4# and Ru@5#,
and is a measure of the relative stiffness in bending of the bi
terial beam. When the Poisson’s ratio of each layer is equal,
differential rigidity simplifies to

m5
h1h2~E1h1

22E2h2
2!

2~E1h1
31E2h2

3!
. (5)

The numerator in Eq.~5! is the negative of the numerator in Eq
~4!, i.e., the negative of the numerator in the expression forM p .
Thus the sign ofm is opposite to the sign ofM p. Suhir usedm to
relate the maximum peeling stresspmax to the maximum interfa-
cial shear stress~Eq. ~30! of @3#! while Ru usedm to relate the
local peeling stress to the derivative of the local shear stress~Eq.
~3.9! of @5#!. It is appropriate to consider the possible range
values ofm and this is examined in the next section.

3 The Range of the Differential Rigidity
Suhir @3# asserted that if the value ofm is not small then ‘‘the

normal stresses at the interface can be rather great and pos
result in peeling of the attachment.’’ Considering Eq.~5!, one
would expect that as the stiffness of one layer~say layer 1! begins
to dominate, e.g.,E1@E2 or h1@h2 the value ofm should con-
verge on one half of the thickness of the other layer, i.e.,h2 .

The effect onm of varying the thickness of each layer wa
investigated using the following case study. It is taken from el
tronics, @6#, consisting of a bimaterial beam model of an int
grated circuit~IC!, with silicon as the upper layer~layer 1! and
circuit board substrate as the lower layer~layer 2!. The thickness
of the upper layerh1 was initially set at 0.3 mm andh2 to 0.2 mm.
HereE15121 GPa andE2525 GPa. The coefficients of therma
expansion were assumed to be independent of temperature,
a153.2 ppm/°C anda2512.4 ppm/°C. The Poisson’s ratio wa
assumed identical in each layer. The length of the beam wa
mm. A temperature increase ofDT5100°C was considered.

The effect onm of varyingh1 over the range 0.05 to 1 mm an
h2 over the range 0.125 to 2.5 mm was determined using Eq.~5!,
and the results~for varying h1 only! are plotted in Fig. 3. Also
given is the maximum peeling stress at the free edge,pmax, using
the formulation forp given by Ru@5# and plottingpmax against the
varying thickness of the upper layer

Figure 3 shows thatm converged on a value of 0.1 mm ash1
was increased. This is the valueh2/2, and shows that~as sug-
gested in the first paragraph of this section! when the stiffness of
one layer increases, the magnitude of the differential rigidity
bounded by one-half the thickness of the opposite layer. Thus
range of possible values form extends from2h1/2 to 1h2/2.

It can also be seen that the curves for bothm andpmax cross the
x-axis at the same point. This occurs whenE2h2

25E1h1
2, and is

the condition when bothpmax ~and M p from Eq. ~4!! and m are
zero.

Similar results were found for varyingh2 . In this particular
case study the sign ofm is always opposite to the sign ofpmax
~and consequentlyM p). Its sign shows whether the peeling stre
will be tensile and tend to separate the layers, or compressive
tend to force them together. Whena1,a2 and at the same time a
temperature increase is imposed, as in the above example,
positivem the peeling stress is compressive~pinching! and tends
to force the layers together, whereas for a negativem it is tensile
MARCH 2004, Vol. 71 Õ 291
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and tends to force them apart.~Thus the differential rigiditym can
be used as an alternative toM p in indicating whether a beam i
prone or resistant to delamination.!

In Fig. 3 pmax is always negative except in the unlikely cas
where the upper layer is thinner than 0.091 mm; this implie
resistance to delamination. Note, however, that generally ther
mechanical stress in ICs arises from a temperature reduction
the curing temperature of an epoxy~usually 150°C or 175°C) to
room temperature, or to a test extreme such as265°C. Thus the
case study example is in reality prone to peeling under nor
usage.

An investigation was also made into the effect onm andpmax of
varying E1 andE2 . This again showed that the range of possib
values form was from 2h1/2 to 1h2/2. However, it was also
found that as the moduli of elasticity increased, the maxim
peeling stresspmax increased in proportion.

4 Conclusions
The sign of the interfacial free-edge peeling momentM p indi-

cates whether a bimaterial beam is prone or resistant to delam
tion under thermomechanical stress. This sign can be found
one simple calculation when the layer properties and the temp
ture change are known. The relationship between the peeling
mentM p and the differential rigiditym of the bimaterial beam was
examined. It was shown that there is a close relationship, and
the sign of the differential rigidity is also a direct indicator of th
resistance—or the tendency—to peeling. Finally it was shown
upper and lower limits to the value of the differential rigidi
exist; as the stiffness of one layer becomes dominant, the ma
tude of the differential rigidity converges to one-half the thickne
of the opposite layer.
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Triple Coordinate Transforms for
Prediction of Falling Cylinder Through
the Water Column

Peter C. Chu, Chenwu Fan, Ashley D. Evans,
and Anthony Gilles
Naval Ocean Analysis and Prediction Laboratory,
Department of Oceanography, Naval Postgraduate Sch
833 Dyer Road, Monterey, CA 93943

Triple coordinate systems are introduced to predict translat
and orientation of falling rigid cylinder through the water co
umn: earth-fixed coordinate (E-coordinate), cylinder’s main-a
following coordinate (M-coordinate), and hydrodynamic force fo
lowing coordinate (F-coordinate). Use of the triple coordina
systems and the transforms among them leads to the simplific
of the dynamical system. The body and buoyancy forces and
292 Õ Vol. 71, MARCH 2004 Copyright © 2
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moments are easily calculated using the E-coordinate system.
hydrodynamic forces (such as the drag and lift forces) and th
moments are easily computed using the F-coordinate. The cy
der’s moments of gyration are simply represented using
M-coordinate. Data collected from a cylinder-drop experiment
the Naval Postgraduate School swimming pool in June 2001 s
great potential of using the triple coordinate transform
@DOI: 10.1115/1.1651093#

1 Introduction
Consider an axially symmetric cylinder with the centers

mass~X! and volume~B! on the main axis~Fig. 1!. Let (L,d,x)
represent the cylinder’s length, diameter, and the distance betw
the two points~X,B!. The positivex-values refer to nose-down
case, i.e., the center of mass~COM! is lower than the center o
volume ~COV!. Three coordinate systems are used to model
hydrodynamics of falling cylinder through the water colum
earth-fixed coordinate~E-coordinate!, cylinder’s main-axis fol-
lowing coordinate~M-coordinate!, and hydrodynamic force fol-
lowing coordinate ~F-coordinate!. All the systems are three
dimensional, orthogonal, and right-handed.

2 Triple Coordinate Systems

2.1 E-Coordinate. The E-coordinate is represented b
FE~O,i,j ,k) with the origin ‘‘O,’’ and three axes:x, y-axes~hori-
zontal! with the unit vectors~i,j ! and z-axis~vertical! with the unit
vectork ~upward positive!. The position of the cylinder is repre
sented by the position of the COM,

X5xi1yj1zk, (1)

which is translation of the cylinder. The translation velocity
given by

dX

dt
5V, V5~u,v,w!. (2)

2.2 M-Coordinate. Let orientation of the cylinder’s main-
axis ~pointing downward! is given by iM . The angle betweeniM
andk is denoted byc21p/2. Projection of the vectoriM onto the
(x,y) plane creates angle (c3) between the projection and th
x-axis ~Fig. 2!. The M-coordinate is represented b
FM(X,iM ,jM ,kM) with the origin ‘‘X,’’ unit vectors (iM ,jM ,kM),
and coordinates (xM ,yM ,zM). In the plane consisting of vector
iM andk ~passing through the pointM, called the IMK plane!, two
new unit vectors (jM ,kM) are defined withjM perpendicular to the
IMK plane, andkM perpendicular toiM in the IMK plane. The unit
vectors of the M-coordinate system are given by~Fig. 2!

j M5k3 iM , kM5 iM3 j M . (3)

The M-coordinate system is solely determined by orientation
the cylinder’s main-axisiM . Let the vectorP be represented byEP
in the E-coordinate and byMP in the M-coordinate, and letM

E R be
the rotation matrix from the M-coordinate to the E-coordinate,

M
E R~c2 ,c3![F r 11 r 12 r 13

r 21 r 22 r 23

r 31 r 32 r 33

G5F cosc3 2sinc3 0

sinc3 cosc3 0

0 0 1
G

3F cosc2 0 sinc2

0 1 0

2sinc2 0 cosc2

G , (4)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 1
2003; final revision, Sept. 19, 2003. Associate Editor: D. A. Siginer.
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which represents (iM ,jM ,kM),

iM5F r 11

r 21

r 31

G , j M5F r 12

r 22

r 32

G , kM5F r 13

r 23

r 33

G . (5)

Transformation ofMP into EP contains rotation and translation,

EP5M
E R~c2 ,c3!MP1X. (6)

Fig. 3 Effect on m and p max of varying upper layer thickness

Fig. 1 M-coordinate with the COM as the origin X and „ im,jm…
as the two axes. Here, x is the distance between the COV „B…

and COM, „L ,d … are the cylinder’s length and diameter.
Journal of Applied Mechanics
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Let the cylinder rotate around (iM ,jM ,kM) with angles
(w1 ,w2 ,w3) ~Fig. 2!. The angular velocity of cylinder is calcu
lated by

v15
dw1

dt
, v25

dw2

dt
, v35

dw3

dt
, (7)

and

c15w1 ,
dc2

dt
5

dw2

dt
5v2 ,

dc3

dt
Þ

dw3

dt
. (8)

If ( v1 ,v2 ,v3) are given, time integration of~7! with the time
interval Dt leads to

Dw15v1Dt, Dw25v2Dt, Dw35v3Dt. (9)

The increments (Dc2 ,Dc3) are determined by the relationshi
between the two rotation matricesM

E R(c21Dc2 ,c31Dc3) and

M
E R(c2 ,c3)

M
E R~c21Dc2 ,c31Dc3!

5M
E R~c2 ,c3!F cos~Dw3! 2sin~Dw3! 0

sin~Dw3! cos~Dw3! 0

0 0 1
G

3F cos~Dw2! 0 sin~Dw2!

0 1 0

2sin~Dw2! 0 cos~Dw2!
G . (10)

2.3 F-Coordinate. The F-coordinate is represented b
FF(X,iF ,jF ,kF) with the origin X, unit vectors (iF ,jF ,kF), and
coordinates (xF ,yF ,zF). Let Vw be the fluid velocity. The water-
to-cylinder velocity is represented byVr5Vw2V, that is decom-
posed into two parts,

Vr5V11V2 , V15~Vr• iF!iF , V25Vr2~Vr• iF!iF ,
(11)

whereV1 is the component paralleling to the cylinder’s main-ax
~i.e., along iM), and V2 is the component perpendicular to th
cylinder’s main-axial direction. The unit vectors for th
F-coordinate are defined by~column vectors!

iF5 iM5F r 11

r 21

r 31

G , jF5V2 /uV2u, kF5 iF3 jF . (12)
Fig. 2 Three coordinate systems
MARCH 2004, Vol. 71 Õ 293
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The F-coordinate system is solely determined by orientation of
cylinder’s main-axis (iM) and the water-to-cylinder velocity. Not
that the M and F-coordinate systems have one common unit
tor iM ~orientation of the cylinder!.

Let F
ER be the rotation matrix from the F-coordinate to th

E-coordinate,

F
ER~c2 ,c3 ,fMF![F r 11 r 128 r 138

r 21 r 228 r 238

r 31 r 328 r 338
G , fMF[~ j M ,jF!,

(13)

which leads to

iF5F r 11

r 21

r 31

G , jF5F r 128

r 228

r 328
G , kF5F r 138

r 238

r 338
G . (14)

Here,fMF is the angle between the two unit vectors (j M ,jF). Let
the vectorP be represented byFP in the F-coordinate. Transfor
mation ofFP into EP contains rotation and translation,

EP5F
ER~c2 ,c3 ,fMF!FP1X. (15)

Use of the F-coordinate system simplifies the calculations for
lift and drag forces and torques acting on the cylinder. Since
M and F-coordinates share a common axisiM5 iF , the rotation
matrix from the F to M-coordinate systems is given by

F
MR5E

MR E
FR5M

E R21~c2 ,c3!F
ER~c2 ,c3 ,fMF!

5F 1 0 0

0 e22 e23

0 e32 e33

G , (16)

is two-dimensional with the rotation matrix given by

F
ME5@e2 e3#, e25Fe22

e32
G , e35Fe23

e33
G . (17)

Let the cylinder rotate around (iF ,jF ,kF) with the angular ve-
locity components represented by (v18 ,v28 ,v38) ~Fig. 2!. They are
connected to the angular velocity components in the M-coordin
system by

v185v1 , Fv28

v38
G5M

F EFv2

v3
G . (18)

3 Prediction of Hydrodynamic Characteristics
of Falling Cylinder

3.1 Translation Velocity. The translation velocity of the
cylinder ~V! is governed by the momentum equation in t
E-coordinate system,

Table 1 Physical parameters of the model cylinders

Cylinder Mass~g! L (cm)
Volume
~cm3!

rm

~g m23!

J1

~g m2!

x
~cm!

J2(J3)
~g m2!

322.5 15.20 191.01 1.69 330.5 0.00 6087
1 0.74 5783.0

1.48 6233.8
2 254.2 12.10 152.05 1.67 271.3 0.06 3424

0.53 3206.5
1.00 3312.6

3 215.3 9.12 114.61 1.88 235.0 0.00 1695
0.29 1577.5
0.58 1556.8
294 Õ Vol. 71, MARCH 2004
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dt F u
v
w
G52F 0

0
~12rw / r̄ !g

G1
1

r̄P F Fx

Fy

Fz

G , (19)

whereg is the gravitational acceleration;r̄ is the average cylinder
density;rw is the water density;P is the cylinder volume; and
r̄P5m, is the cylinder mass; (Fx ,Fy ,Fz) are the hydrodynamic
force ~including drag and lift forces! components. The drag an
lift forces are calculated using the drag and lift laws with t
given water-to-cylinder velocity (Vr) that is calculated using the
F-coordinate.

3.2 Cylinder’s Orientation. It is convenient to write the
moment of momentum equation

J•
dv

dt
5Mb1Mh , (20)

in the M-coordinate system with the cylinder’s angular veloc
components (v1 ,v2 ,v3) defined by~7!. Here,Mb andMh are the
body and surface force torques. The moment of gyration tenso
the axially symmetric cylinder is a diagonal matrix

J5F J1 0 0

0 J2 0

0 0 J3

G , (21)

where J1 , J2 , and J3 are the moments of inertia. The gravit
force, passing the COM, doesn’t induce the moment. The bu
ancy force induces the moment in thejM direction if the COM
doesn’t coincide with the COV~i.e., xÞ0!,

Mb5Pxrwg cosc2jM . (22)

The moment of the hydrodynamic force iniF direction is not
caused by the drag and lift forces, but by the viscous fluid. T
moment of the viscous force is calculated by~White @1#!

M v152Cm1v1iF , Cm1[pmLd2. (23)

When the cylinder rotates aroundjF with the angular velocityv28 ,
the drag force exerts the torque on the cylinder in thejF direction
(Md2) and in thekF direction (Md3). The lift force exerts the
torque on the cylinder in thejF direction (M l2). The moment of
hydrodynamic forceMh

Mh5M v11Md21Md31M l2 (24)

.9

.6

.2

Table 2 Trajectory patterns

Trajectory
Pattern

Description

Straight Cylinder exhibited little angular change aboutz-axis. The
attitude remained nearly parallel with z-axis~615 deg!.

Slant Cylinder exhibited little angular change about z-axis. Th
attitude was 45 deg offz-axis ~615 deg!.

Spiral Cylinder experienced rotation aboutz-axis throughout the
water column

Flip Initial water entry point rotated at least 180 deg
Flat Cylinder’s angle with vertical near 90 deg for most of th

trajectory
Seesaw Similar to the flat pattern except that cylinder’s angle w

vertical would oscillate between greater~less! than 90 deg
and less
~greater! than 90 deg like a seesaw

Combin-
ation

Complex trajectory where cylinder exhibited several
of theabove patterns
Transactions of the ASME
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Fig. 3 Cylinders’ track patterns observed during CYDEX
is represented in M-coordinate. Note that the M and F-coordin
systems have the samex-axis, iM5 iF . The equations for
(v1 ,v2 ,v3) are given by

dv1

dt
52a1v1 , (25)

d

dt Fv2

v3
G52B•Fv2

v3
G1a2 , (26)

where
Journal of Applied Mechanics
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a1[

Cm1

J1
58pmL/m,

B[F 1

J2
0

0
1

J3

G •~Cm2e2e2
T1Cm3e3e3

T2Cmle2e3
T!,

(27)
MARCH 2004, Vol. 71 Õ 295
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Table 3 Trajectory patterns for nose-down dropping „xÌ0…

Cylinder Length~cm! 15.20 12.10 9.12
x ~cm! 1.48 1.00 0.58

Drop angle 15 deg Straight~1! Straight~1!, Spiral ~1! Spiral* ~2!
Slant-straight* ~3! Slant-straight* ~2! Straight-slant~1!

Slant-straight~1!
Drop angle 30 deg Straight~1! Slant ~1!, Spiral ~1! Spiral* ~5!

Slant-straight* ~4! Straight~1!
Slant-straight* ~2!

Drop angle 45 deg Slant* ~2!, Straight~1! Straight~1! Spiral* ~4!
Slant-straight~1! Spiral* ~2! Slant-spiral~1!
Straight-spiral~1! Straight-spiral~1!

Slant-straight~1!
Drop angle 60 deg Straight** ~5! Straight* ~3! Spiral* ~4!

Straight-spiral~1! Straight-spiral~1!
Straight-slant~1!

Drop angle 75 deg Straight** ~5! Straight~2! Spiral ~2!, Slant~1!
Straight-spiral~3! Straight-spiral~2!
t

d of
in
of

ri-

ion
rs’
able
de
a2[F 1

J2
0

0
1

J3

G •~M1e22M3e3!1
Pxgrw

J2
cosc2F10G .

Here, Ml[1/2drw /(11 f r)LV2
2x, M3[1/2Cd2drw /(1

1 f r)V2
2Lx, and f r is the added mass factor for the moment

drag and lift forces. Equation~25! has the analytical solution

v1~ t !5v1~ t0!exp@2a1~ t2t0!#, (28)

which represents damping rotation of the cylinder around
main axis (iM). The Euler-typed forward difference is used
solve the five Eqs.~19!, ~26!, and~28!.
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4 Model Evaluation

The Cylinder Drop Experiment~CYDEX! was conducted at the
Naval Postgraduate School~NPS! in July 2001~Chu et al.@2#! to
evaluate the three-dimensional theoretical model. It consiste
dropping cylinders whose physical conditions are illustrated
Table 1 into the water and recording the position as a function
time using two digital cameras at~30 Hz! as the cylinders fell 2.4
meters to the pool bottom. After analyzing the CODEX expe
mental data, seven general trajectory patterns~Table 2! are iden-
tified: straight, slant, spiral, flip, flat, see-saw, and combinat
~Fig. 3!. Dependence of the trajectory patterns on the cylinde
physical parameters and release conditions are illustrated in T
3. The theoretical model predicts the motion of cylinder insi
Fig. 4 Movement of Cylinder #1 „LÄ15.20 cm, r̄Ä1.69 g cm À3
… with xÄ0.74 cm

and drop angle 45 deg obtained from „a… experiment, and „b… recursive model
Transactions of the ASME
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Fig. 5 Movement of Cylinder #2 „LÄ12.10 cm, r̄Ä1.67 g cm À3
… with xÄÀ1.00

cm and drop angle 30 deg obtained from „a… experiment, and „b… recursive
model
e
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e
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d

nvert
the water column reasonably well. Two examples are listed
illustration.

Positive x „Nose-Down…. Cylinder #1 (L515.20 cm, r̄
51.69 g cm23) with x50.74 m is injected to the water with th
drop angle 45 deg. The physical parameters of this cylinder
given by

m5322.5 g, J15330.5 g cm2, J25J355783.0 g cm2.
(29a)

Undersea cameras measure the initial conditions

x050, y050, z050, u050, v0521.55 m s21,

w0522.52 m s21,
(29b)

c1050, c20560 deg, c305295 deg, v1050,

v2050.49 s21, v3050.29 s21.

Substitution of the model parameters~29a! and the initial condi-
tions~29b! into the theoretical model~~19!, ~26!, ~28!! leads to the
prediction of the cylinder’s translation and orientation that a
compared with the data collected during CYDEX at time ste
~Fig. 4!. Both model simulated and observed tracks show a sl
straight pattern.

Negative x „Nose-Up…: Cylinder #2 (L512.10 cm, r̄
51.67 g cm23) with x521.00 cm is injected to the water with
the drop angle 30 deg. The physical parameters of this cylin
are given by

m5254.2 g, J15271.3 g cm2, J25J353312.6 g cm2.
(30a)

Undersea cameras measure the initial conditions
hanics
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for

are

re
ps
nt-

der

x050, y050, z050, u050, v0520.75 m s21,

w0520.67 m s21,
(30b)

c1050, c20524 deg, c305296 deg, v1050,

v20525.08 s21, v3050.15 s21.

The predicted cylinder’s translation and orientation are compa
with the data collected during CYDEX at time steps~Fig. 5!. The
simulated and observed tracks show flip-spiral pattern. The
occurs at 0.11 s~0.13 s! after cylinder entering the water in th
experiment~model!. After the flip, the cylinder spirals down to th
bottom.

5 Conclusions
~1! Triple coordinate systems are suggested to predict

translation and orientation of falling rigid cylinder through wat
column: earth-fixed coordinate~E-coordinate!, cylinder’s main-
axis following coordinate~M-coordinate!, and hydrodynamic
force following coordinate~F-coordinate!. It simplifies the com-
putation with the body and buoyancy forces and their moment
the E-coordinate system, the hydrodynamic forces~such as the
drag and lift forces! and their moments in the F-coordinate, an
the cylinder’s moments of gyration in the M-coordinate.

~2! Usually, the momentum~moment of momentum! equation
for predicting the cylinder’s translation velocity~orientation! is
represented in the E-coordinate~M-coordinate! system. Transfor-
mations among the three coordinate systems are used to co
the forcing terms into E-coordinate~M-coordinate! for the mo-
MARCH 2004, Vol. 71 Õ 297
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mentum~moment of momentum! equation. A numerical model is
developed on the base of the triple coordinate transform to pre
the cylinder’s translation and orientation.

~3! Model-experiment comparison shows that the model w
predicts the cylinder’s translation and orientation. However,
performance of the numerical model forx50 is not as good as fo
xÞ0.
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Determination of Loads in an
Inextensible Network According to
Geometry of Its Wrinkles

Cheng Luo
Biomedical Engineering and Institute for
Micromanufacturing, Louisiana Tech University, 911
Hergot Avenue, Ruston, LA 71272
e-mail: chengluo@latech.edu

This note derives an analytical relationship for an inextensi
network when it buckles. According to the relationship, the
plied compressive force can be determined according to the m
mum absolute values of deflection and angle of deflection in
network’s wrinkles. @DOI: 10.1115/1.1651094#

1 Introduction
If we pull both ends of a thin plastic sheet used for food pa

aging, a set of wrinkles, parallel to the loading direction, appe
Cerda and Mahadevan@1# and Cerda et al.@2# showed that the
wavelength of the wrinkles is proportional to the square root
the sample size, and the tension can be determined accordi
the wavelength of the wrinkles. Fabric, such as cloth, is usu
composed of two families of inextensible elastic fibers. The Po
son effect in the fabric may be different from that in the plas
sheet. For example, if the two families of fibers are loosely c
nected, then the Poisson effect may be neglected, while this
not be true for the plastic sheet. Therefore, the modeling of
inextensible network may be different from that of a plastic she
In this note, we demonstrate that the applied compressive forc
the fabric can be determined according to the maximum abso
values of deflection and angle of deflection in its wrinkles.

The effects of bending stiffness of a fiber network or an ela
surface have been well studied in the literature. Simmonds@3#
considered elastic surfaces with resistance to strain and flex

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2003, final revision, September 19, 2003. Associate Editor: O. O’Reilly.
298 Õ Vol. 71, MARCH 2004

oaded 18 Dec 2009 to 137.229.21.11. Redistribution subject to ASME li
dict

ell
he

rch

ool

cal

ss,

le
p-
axi-
the

k-
rs.

of
g to
lly
is-

tic
n-
an-
an
et.
on

lute

tic

ure,

and Wang and Pipkin@4,5# studied inextensible nets with bendin
stiffness. Hilgers and Pipkin developed a theory of elastic she
in a series of papers,@6–9#, by introducing the second derivative
of the deformation as well as the first derivatives into the stra
energy density. Hilgers@10# also examined dynamic effects. Lu
and Steigmann@11# established a model, a generalized plate/sh
theory, to take into account the effects of bending and twisting
the inextensible networks for finite deformations in 3-space, a
verified the soundness of a special form of finite-deformat
plate theory developed by Wang and Pipkin in@4#. Wang and
Pipkin @4# used their theory to consider the Euler buckling pro
lem of a flat inextensible network, and indicated that the gove
ing equation of the flat sheet during the buckling is identical
that for finite-amplitude oscillation of a simple pendulum. In th
work, we further explore the buckling problem to determine t
applied load on the inextensible network according to geometr
its wrinkles.

2 An Analytical Relationship
Consider a flat sheet that initially occupies the region 0,x

,L, 0,y,H in the x-y plane. The sheet is composed of tw
families of inextensible fibers, which initially lie parallel to thex
and y-axes; thus every linex5constant ory5constant in the re-
gion is regarded as a fiber. The two families of fibers are ortho
nal in the reference configuration. They are assumed to be
tinuously distributed and fastened together at their points
intersection to prevent slipping of one fiber family relative to t
other. The sheet is treated as a continuum. Each fiber meet
Bernoulli-Euler hypotheses: cross sections of each fiber rem
plane, suffer no strain, and are normal to the fiber in every c
figuration. A uniform forceT per unit length is applied to the edg
x5L as a dead load along the negative direction ofx-axis ~see
Fig. 1!, and edgesy50 andy5H are free from applied tractions
and couples and displacement restrictions. The possible boun
conditions of physical meaning on the sidesx50 andx5L can be
classified into four categories:~i! both sidesx50 andx5L are
simply supported;~ii ! the sidex50 is clamped and the sidex
5L is free; ~iii ! both sidesx50 andx5L are clamped; and~iv!
the sidex50 is clamped and the sidex5L is simply supported.
For any set of those boundary conditions, a solution is that
family of fibers withx5constant remain straight lines, the fami
of fibers with y5constant have identical deflections in thex-z
plane and have no deflections in the other planes, and the
families of fibers are still orthogonal in the deformed configu
tion ~see Fig. 2!. Let u(x) denote the angle between the tangent
the deflection curve and thex-y plane. Then it satisfies the equa
tion, @4#,

2,

Fig. 1 Top view of the flat sheet before wrinkling

Fig. 2 Side view of a possible deformed configuration of the
sheet
Transactions of the ASME
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d2u~x!

dx2
1 f sinu~x!50, (1)

wheref 5T/G andG represents the bending stiffness of the she
The boundary conditions in each category can be expresse
terms ofu(x) as follows:

~ i! u~0!5u0 ,
du~x!

dx U
x50

50,
du~x!

dx U
x5L

50; (2)

~ ii ! u~0!5u0 ,
du~x!

dx U
x5L

50; (3)

~ iii ! u~0!5u0 , u~L !5u0 or 2u0 ; (4)

~ iv! u~0!5u0 ,
du~x!

dx U
x5L

50. (5)

Let w(x) denote the deflection of the family of fibers wit
y5constant. Then, using Eq.~14.5! of @4# and noting that the
bending couple is2Tw(x), we have

w~x!52
G

T

du~x!

dx
. (6)

The condition~6! describes the relationship of the deflection w
the forceT and the change in the angle of deflection. We desire
make this relationship more explicit for easy determination oT
according to the geometry of the wrinkles. From~6!, it can be
seen that

w05
G

T Udu~x!

dx U
max

, (7)

where w0 denotes the maximum absolute value of deflecti
Next, we determineudu(x)/dxumax first in Case~i! and then in the
other three cases.

Rewrite ~1! as

1

2

d

du~x! S du~x!

dx D 2

1 f sinu~x!50. (8)

With the help of~2!1 and ~2!2 , we obtain

S du~x!

dx D 2

52 f ~cosu~x!2cosu~L !!, (9)

which is the first integral of~8!. There are two approaches t
obtain the maximum value of (du(x)/dx)2 and consequently
udu(x)/dxumax: 1. first solve~9! to find the analytical expressio
of u(x), and then substitute it back into~9! to obtain the maxi-
mum value of (du(x)/dx)2, and 2. consider the similarity be
tween this buckling problem and the oscillation behavior o
simple pendulum. As indicated in Wang and Pipkin@4#, with x
interpreted as time, the ordinary differential equation~1! is the
governing equation for finite-amplitude oscillation of a simp
pendulum,@12#, and Eq.~9! corresponds to conservation of ener
in the pendulum equations. If we use the first approach, the
rived mathematical expression ofu(x) will involve elliptic func-
tions, which increase efforts to find the maximum value
(du(x)/dx)2, while the second approach has a straightforw
physical meaning and is easily visualized. Therefore, we adop
second approach here. The conditions~2! state that the pendulum
is at its maximum deflectionu0 at time 0 with the speed 0 and ha
the speed 0 at timeL. This indicates thatu0 is its amplitude of
oscillation~without loss of generality,u0 is assumed to be a pos
tive value, and the derived result~11! is also true ifu0 is supposed
to be negative!, L is an even multiple of one-quarter of the perio
of the pendulum,u(L)5u0 or 2u0 , and 2u0<u(x)<u0 ~see
Fig. 3 for an illustration!. Consequently, it can be observed fro
~9! that (du(x)/dx)2 has the maximum value atu(x)50, i.e.,
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S du~x!

dx D
max

2

52 f ~12cosu~L !!. (10)

By ~7! and ~10!, we find the relationship ofT with w0 andu0

T5
2G~12cosu0!

w0
2

. (11)

Using the same procedures as the above for Case~i!, we can
find that the relationship~11! also holds in the other three case
Therefore, we conclude that, no matter what boundary conditi
a buckled sheet has, the compressive force applied on the buc
sheet can be determined using the relationship~11! after we mea-
sure the maximum values of deflection and angle of deflection
the wrinkles. The independence of~11! on the boundary condi-
tions implies that the relationship can be used to determine
applied load not only in the rectangular sheet, but also in the c
or curtain whose local area is wrinkled.

3 Discussions
For ~11! to hold, the Poisson effect in the network needs to

negligibly small, which is true, for example, when the two fam
lies of fibers are loosely connected. Since the relationship~11!
was obtained using the solution for a simple pendulum, it subje
to the physical limitation for the simple pendulum as well, i.
2p/2,u(x),p/2. This implies that if the angle of deflection i
beyond that range, the relationship~11! is not applicable. In addi-
tion, it can be observed that the governing equation~1! and the
analytical expressions of the boundary conditions~2!–~5! are
identical to those for a buckled inextensible rod which also sa
fies the Bernoulli-Euler hypotheses,@13#. Therefore, the relation-
ship~11! holds for the inextensible rod as well, and can be used
determine the compressive force in its buckled configuration a
its maximum absolute values of deflection and angle of deflec
are measured.
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