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ABSTRACT

The nccurrence of open-occan deep CONVECHion requires o hackg-mmd cyclonic circy-
lation and a preconditioning. Both conditions reduce the stratification of the water col-
umn within the eyclonic gyre, which will then become eligible for convection if the surface
forcing 18 cuﬂ‘cscmlv intense. Therefore, Tor open-ocgan deep convection the generation
of vertical cells inside the vortex by any mechanism (not necesspry by pure
thermedynamical processes) is ult :mmch important.  There sdre two :l}n.ﬂ-n»nl mcch-
anisms for inducing vertical cells inside a stably stratifiecd vortex: baroclinic and
centrifugal instabilities. The combination of the twn 1s called symmetric instebility. 1n
order 1o verify the importance of symmetric instability on the genération of vértica) cells
inside the vartex. a tangential velocity field with Gaoussian dmrmuuan in‘both radial and
vertical under stable stratification is taken as a mean flow fiekl. The disturbances
produced from this mean flow are assumed to be two dimensional (no azimuthal de
npendency) and described by a sireamfunciion in the radial-vertical sections, This
streamfunction satisfies a second-order partial differential equation. The numerical sol-
utions show the generation of vertical ceils inside the vortex. The strength 2nd structure
of these cells Iargci\f depend on the four parameters: Burgor number Bu = (NH|fR).
Rossby number Re = I7[fR, barotropic index 1, and baroclinic index mi.. The larger the
values of Ro, m,, and m,, , or the smaller the value of Bu (weaker t:tratlﬁcmm" for a given
size of vortex). the stronger the vertigal circulation.  The time rate change of density
(density redistribution) generaiedd by a vortex and horizontally averaged inside the vortex,
indicates the decrease of density in the lower part of the vortex, and the increase of den-
sity in the upper part of the vortex. This process, on the time scale of weeks. decreases
the static stability and serves as ope contributor 1o preconditioning Tor the open occan
‘dcep conveetion.

INTRODUCTION

The association of deep. convection with strong vortices has long been observed.
Gordon (1978) reported the vecurrence of deep convection i February 1977 within the
central region of the Weddell Gyre west of Maud Rise, A columsn of water (14 km radius)
was observed in which the normal Antarctic stratification of temperature was absent. The
column appeared as a warm, low-salinity surface layer occupying approximately the up-
per 190 m above a cold nearly homogeneous water column, with & cyclonic cddy {surface

velocity greater than 50 c¢m/s) extending to at least 4000 m.
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Onc may ask such questions: is thereany relation between the vortex and the deep
convection? and what is the relation? The main task of this paper is to answer these
questions and to present a possible mechanism for generating vertical cells by a vortex.
In'a general sense, convection ean be defined as vertical overturning (Chu. 19913, no
matter whether the pracess that generated it is thermodynamical or dvnamical.

Vortices represent the mest energetic components of the meso-seale eddy ficld in the
world occans. Their large azimuthal swirl speeds, compared with the rate at which they
translate, allows them to carry substantial volumes of fluid with them over long periods
of time. Rayleigh (IR80, 1916) frst investigated the instability of rotafing structures in
non-rotating fluids. He considered a basic swirling flow of an invisewd fuid which moves
with angular velocity £(r), an arbitrary function of the distance r from the axis of rota-
tion. By a simple physical argument Rayleigh then derived his celebrated criterion for
stability. Rayleigh's circulation: criterion states that a necessary and sufficient condition
for stability to axisymmetric disturbances is that the square of the angular momentum
does not decrease radially anywhere,

cp—;:—“—f{ 20y (0

where the function, Clr), it called the Rayleigh Discriminant. The vortex can be cither
centrifugally stable or unstable, depending upon the sign of the Rayleigh Diseriminant.
€. Rayleigh further observed that there is an analogy between the stability of rotating
flows and the szability of a stratified Muid al rest in @ gravitational field, the analogue of
€ in Tact being the square of the Brunt-Vaisaila frequency.

In subsequent sections a dynamical system is established to discuss the generation of
vertical celis inside vortices. The sea water is assumed to be Boussinesy and inviscid.
Therefore, the svstem excludes the damping effect of frictional forces on the vortes.
Furthermore, for the sake of simplicity, we also assume no vertical velocity at the top and

the battom of the vortex and no interaction between the vortes and the ambient flow.

2. DYNAMICAL SYSTEM
2.1 Total Flow

A cylindrical conrdinate svstem (r, 4, z) is used in this study with the rotating axis of
the vortex as the center of the system (Fig.1). The vertical coordinate is positive upward
and zero avthe bottom of the vortex.



Fig. 1. The cylindrical coordinates (r. 4, z) with the vertical axis at the center of the

VOoTiex:
The Boussinesq approximation is assumed [or our system. pp is the charaeteristic
density of the sea water. The total density and pressure can be decomposed into
1=yt ope (2a)
7= (pa = po&z) + ps (2h)

where p_ is the air pressure at the ocean surface, g is the dvnamical pressure, and p. is the
density deviation from the characteristic value. Undet the assumption that the motion

is axisymmetric and inviscid, the governing cquations are swritten in the eyvlindrical cont-

dinates as
vy L
ar +5w= P (3a)
dv . v _
U u=0 (35)
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dw  ps | “p. a
dt Pt Py s (3c)
&(ru) c(rw)
, =1 (3
or Y (?Z - (ﬂ
dﬂo .
dt Q (3e)

where w, v, w are radial, tangential. and vertical components of the flow feld, respectively,
Q is the thermally induced rate of change of density. However, the dvnamically driven
vertical ¢ells and their contribdtion 1o the deep convection are the main items: (herefore,
Qs set o be zero in this research. The aperator dfdt is defined by

=] 3 T
d_ 0wl v @ 8 {49
dar  dr r i (b

2.2 Basic Flow
A steady axisymmetric and gradiently balanced cirtular vortex with depth # and ra-
dius R, is taken to be the basic flow, ic.,

=10, r=1ilrz), ¥=0, forD<reR 0zz<§H {3}

‘The momentum cquations are

P 1 ép
—— = (¢
v 7 M G (a)
P o7
5 2 — T =) (61

where ¥ is the mean tangential current. fis the Coriolis parameter. The differentiation
of (6a) with respect to = minus the differentiation of (6b) with respect to r. leads 1o the
thermal wind relation for the basic flow

2 & __ 8 % 7a)
i+ r'dz o oo (7a)

Therelore, the basic flow is the gradient balanced flow. Including theearth rotation. the
angular velocity of water parcels at a radius of r is



(5]
=1
=

L F
0 =5=+C
The square of the angular momentum is
£ ¥ T e
M= =5+ =)
The thermal wind relation (7a) heeornes
1 dr g op .
= 7h
A B o @ (76)

3 Disturbances
Suppose that axisymmetric disturbances arc generated from the basic fiow. The total

flow field is then @ combinatinn of the two parts: basic Miow and disturbances,

¥ . . .

W=, v=v 40 w=w po=p+p. p=p+p (&)

Substituting () into (3a-¢) and taking into account {6a.b). and assuming small ampli-

wdes of disturbances, a set of equations for the disturbances is then obinined

u’ R . §

T A TN (e

S LSO [+ <2 LIF IS ?v wi=0 (9h)
(i (o] Gz
ow { 1 an

. Qe

(2] Pa * " Pa o- )

E'(i‘!f'l alrw’) _a (o)

ar iz '

apt ap e, .

o=t u s —— ' =) 9e)

a e a (9¢

The verical circulation generated inside the vortex can be depicted by the
streamfunction
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P L A .

WS W=— il (10)
Eliminating v', p’, p* from (9a-¢). we obtain 4n ¢quation for the streamfunction i
L T T W8 DR A R T . RO MO X 2N
et AT o Foast ar r A F éz dz T 0z o or

(1m

f=_ £ P >
4= ¢z (k2n)
_ 1M 2% 9 _ 8 ép
-B_—_——r—!T?z—-——(f% T]‘g~ Pt 7 (124)
iy - v 0 i3 i
CEL‘ ?f =(,f+—2}1](_,"+—%-+~%;— (12¢)
L

represent three different frequencies: /4 is the buoyancy f requency, /B is the baroclinic
frequency, and /€ is the generalized inertial frequency. Here. the mean densitv i i 1

function of rand z . F'mm (124) and (126} we can ger the refationship between 4 and B

B 2
A _0B_ 1 P o
“r oz rtoass

If the occan has constant stratification outside the vortex. the integration of (12d) with
respect to r leads to

A=N+D {13a)

1

D—_—J —n': j [+ 4-%{%1-‘-1214.— (135)
'z

where N is the characteristic value of the Brunt-Vaisala lrequency. which is a constant in
this research. The time scale for deep convection is gener ally much longer than N and

i,
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Nr;

The time rate of ¢hange should be neplected against both the huavancy frequency and the
inertial frequency. Therefore, the equation for streamfunction (11)is simplified into

i, AN Bpop. @ C M B
Tt T Y m e T e 0 (14)

which shows the vertical ¢ells in (r. z) section generated by the combined effect of
buoyancy, barochinicity. andl inertia of a vortex, which is ¢alled the symmetric instability,
Here. we are intercsted in the intrinsic physical mechanisms generating vertical cells inside
a variex. Intoraction between the voreex and the ambient Mow is beyond the scope of this
rescarch. Therefore, it is feasodnable to assume that no Mow cin acress the edge of the
vortex. The radial velocity at the conter of the vortex should be zero, Furthermore, we
also assume noovertical velocity at the top and the botiom of the vortex for the sake of

simplicity. Thus. the houndury conditions for (14) are

=0, at r=0, r=R. z=U, z:=H (15)

3. NONDIMENSIONALIZATION
If the independent vatiables (r. z), mean tangential velocity, squares of the three fre-

quencics (B, C, 02), and the streamfunction are nondimensionalized by
= R

(r, z. F) = (RF. HI. 17). (B,(.D)= f(R:-% CRa=s D). & = VH(16)

where 17 s the characteristic tangential velocity of the vortex, and

B=-{1 +’?Rn—-) {17a)
E=(i +2Rn—}{I~LRo Vo Ro Bl (17h)
ar
& ' I 5 3 _
D= [0 +2r0 L) EL s 2 R (B pop (170)
s roodz rooaz
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where Ra = V[fR is the Rossby number. The nondimensional form 4if the equation {14)
is

" ‘:2? - e ~ J?'.:J
(Bu+ RoD)~—= | 2Rk il i
are Criz A==
-\ A N .
—(Bu+ RoD) L2 (D€ L galB g, By {18)
roar iz ar T <2

where Bie = (NHIRY. is the Burger number, which i the square of the ratio of the
Russby radius of deformation to the radjus of the vortex, For o given virtex, the mag-
nitude of Bx indicates the stratification. The smaller the Bu, the weaker the stratification.
The nondimensional form of the boundary conditions (15) is

=0, at ¥=0, F=1, =0, =1 (19)

4. VERTICAL CELLS DRIVEN BY A GAUSSIAN VORTEX
A cvelonic vorrex with-Gaussian distribution in both radial and vertienl

PG =exp[ —mfF ~ 4 = mE -] (20)

is chosen as.a basic flow in this study, where m,. m. are parameters indicating the strength
of the shear in radial and vertical directions.  Equation (18) with the boundiry condition
(19} and mean MNow (20) is integrateed numerically. Thesuccessive over-relnxation method
is used for the integration. The solutivns show the generation of vertion] celis inside the
vortex even in the relatively strong stratification case (B = 1), The other three mixdel
parametcrs Ro, m,, m, are found to be impoirtant in affecting the structure of the vertical
cells insidle thevortex.  Foroagiven voriex size, each paramerer, taking only two different
values. represents the two different physical conditions, such as. Ro = 0.1. for a relatively
weak vortex. and Re = 0.2, for arelatively strong voriex: m, = (O, for the absence of radial
shear. and m,= 4. {or a relatively strong radial shear; and s, = 0L Tor the absence of ver-
tical shear. and m, = 4, fora relatively strong vertical shear.
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Fig.2 shows the streamfunction in a radial-vertical seetion for Bu =1 amd Reo =0.1:
(g)ym, =0, s, =0, (h)m =4, m =0 (cYm, =0, m, =4, (dym=4.m =4. These
cases refer to @ relatively strong stratification and a refatively weak voriex.

Several results can be easily drawn from Fig.2:

(2) The vertical cells do exist inside the vortex for all cases. even in the case without
radial and veriical shears of the mean tangential velocity a8 shown in Fig.2a. This
strongly suggests that the square of the generalized inertial frequency. C{rl. is a Tunda-
mental factor in generating vertical circulation inside the voriex {singe B=0and. D=0).

(b) Comparison of Fig.2a with Fip.2b shows that without the vertical shear on the
mean tangential velocity. the effect of the radial shear (m, # 0) on the vertical celle ix very
small.

(¢) Comparison of Fig.2b with Fig.2d indicates that with vertical shear on the mean
tangential velocity. the effect of the radial shear on the vertical celis heenmes ovident.
The upper cell penctrates to the base of the vortex, and the twi-cell siructure becomes a
three-cell structure,

(d) Comparison of Fig.2¢ with Fig.2a leads 1o the result that the baroclinity alwave
intensifies the strength of the vertical cells.

Fig.3 shows the streamfunction in 2 radial-vortical seetion for Bu =1 and Ra = 02
(@m =0, m.=0. (Nm=24 m=0, ()m=0,m=4, (dm=4 m= 4. These
cases refer 1o a relatively strong stratification and a relatively strong vortex. Comparison
of Fig.3 with Fig.2 shows that the increase of the Rosshy number will generally
strengthen the vertical cells. Therefore, for a given size of the vortex. the faster the rota-

tion of the vortex, the stronger the vertical celis inside the voriex.
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5. TIME RATE OF DENSITY INSIDE THE VORTEX

Define a nondimensional density periurhation averaged mver the horizontal plane in-

side the vortex as follows:

[ R (" o
G= = -[ ERTrdr 2| -rdr
T{'R. n 9 “n
Time ¢is nondimensionalized by
r= ) —
2Fr A

(21)

(22)

where Fr = 1?/gH, is.the Froude number; and § = R/H |, is the aspect ratin. Integrating

the density equation (9e) over the horizonial plane within the vortex, apd using the non-

dimensional forms of parameters (174.0), a nondimensivnal cguation of time rate of

change of horizontally averaged density is obtained

(23)

The derivative. da/dr; is computed for the case: Bu= 1. Ro—0.0.m =4 m.=4

(Fig.2d). Thecifeet of the vartical motion on the density redistribution inside Lhe vortex

is shown in Fig.d, where the densite egreases in the lower part (5 < 0.27) of the vortex.

and increases in the upper part (Z > 027 of the vortex. This process reduces the

stratification and tends to make the deasity vertiealty uniform anside the vortex. We view

this process as one contribution to the preconditioning of the open veean deep convection,
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6. CONCLUSIONS

(a) This rescarch isintended to bring tothe attention of the nceanographic community
the importance of symmetric instability in vortex dynamics. and in generating convection.
Soiutions show generation of a varicty of conveetive celis inside the voriex by this mech-
anism.

{b} The vertical cells ean be generated in the vortex with relatively strong Stratification
and without any tadialior verticdl shenr, The rotation itsell will induce the vertical cir-
culation.

{¢) The barochnicity always intensifies the vertical circutation;  However, the effect
of the radial shear on the vertical cells hecomes impartant only when it is associated with
vertical shear.

(d) The stronger the rotalion of the vortex, the stronger the vertical ¢ells inside {he
vortex.

(¢) The time seale for thedensity redistribution by this dynamically driven overturt-
ing is inversely proportional v the square of the Froude number. For numerous obser-
vations of vortices in the acean: this time scale is several weeks. This scale is coincident
with the time perind needed for the preconditioning.

(1N The soiution here refers to the Gaussian type cyvelonic vortex. For other Kinds of
vortices. the solution may vary.

(2) The solution is obtained from sssuming rigid boundarics both at the 1ap and the
hottom of the:vortex, IT [ree boundary conditions or other kinds of houndary conditions
are used, the shape of the vertical colls will change, espeeially near the houndaries, but the
hasic-physics will remain.
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Fig. 4. Vertical dependency of dg/at for the vortex with Bu= 1. Ro=0.1. m =4. and

m,=4,

The time scale for the density redistribution process insile the vortex can be rovghly
estimated as Tollows. 1f the tangential velogity for the vortex 17 is 50 cmys, and if the
thickness of the vortex H is on the order of | kmi. the square of the Froude number (Frty
will he 0.25 % 104, The aspect ratio § is on the order of 0.1, and the change of the non-
dimensional density perturbation As is on the order of 10 % and the integration,
(=J-;(§f'!g-lr,f6"z'+ f)c?li'rj‘f"ildF . is on the order of 5 (Fig. 4% Therefore, the time scale for

this density redistribution process is

—1 Ao

—22 a0 (24)
2FHOUT)

which is on the order of few weeks. This scale is. coincident with the time period (few
weeks) needed for the preconditioning which creates a region of very weak static stability
within the vortex (Killworth, 1983).



281

R REFERENCES

Charney. 1:G., 1973. Planctary fluid dynamics. In: P. Morel (Editor). Dynamieal
Meteorology. Reidel, Dordrecht, pp. 99-351.

Chu. P.C.. 1991. Geophysics of deep convection and deep water farmation in oceans.
(in this volume). _

Killworth, P.D., 1983, Deep convection in the workd ocean. Rev. Geophys. & Space
Phys.. 210 1-26.

Ooyama, K., 1966. On the stability of the baroclinic circular voriex: a
sufficient criterion for instability. 1. Aumos, Sci., 23: 43-53.

Rayieigh, Lord, 1880, On the swability, or imstability, of certain fiuid motion.
Scientific Papers, Cambridge University Press. 1: 474-487,

Rayleigh, Lord, 1916, On the dynamics of revalving fuids. Scientific Papers,
Cambridge University Press, 61 432-446.



	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15

