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ABSTRACT

The effect on large scale motions of latent heat release by deep cumulus convection in a conditionally un-
stable atmosphere js investigated and a method devised to include this effect directly in theequations for large
scale flow. This method is then applied to the hurricane formation problem by incorporating it into time-
dependent, circular symmetric dynamic hurricane models, either in gradient-wind balance or unbalanced.

Numerical integrations of a two-level approximation of the balanced mode] have been carried out for two
different formulations of the problem (including or not including & frictional radial flow), both starting
from a hypothetical initial state characterized by a weak barotropic circular vortex with a maximum tangen-
tial velocity of 10 m sec™ at a distance of 141,2 km from the center. The results obtained without frictional
radial flow showed slow intensification of the tangential flow, to about 25 m sec™?, and establishment of a
strong radial temperature gradient in the upper troposphere, from sixteen to twenty-four hours after the
initial time, after which a steady state ensued. The radial flow obtained from this model remained less than
2 m sec”!, On the other hand, the results obtained with a superimposed frictional radial flow either decayed
after reaching a moderate tangential velocity, or developed very rapidly after attaining higher velocity, and
did not approach any steady state. The results further show that while the two-level approximation of the
balanced model is able to reveal many important aspects of the development problem, it iz not able to
describe the further development associated with the upper level temperature gradient.
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Low-level Velocity in
Tropical Cyclone (Kuo 1965) =
Theoretical Base for Surface Wind Field

Tangential Radial
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What are tropical cyclone’s effects on oceans
and regional seas?

R With Prof. Kuo (1965)’s

milestone paper, high-resolution
surface winds can be produced, and
in turn to study the tropical
cyclone’s effect on oceans becomes
feasible.
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Wi Tropical cyclone’s effects on oceans &

 Strong near-inertial, anticyclonic turning upper-
ocean currents to the right of the storm track

 Maximum sea surface temperature cooling to the
right of the storm track

e Air-sea fluxes

e Ocean surface wave boundary layer
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Outlines

(1) DMS and Climate

(2) Sea-to-air DMS transfer

(3) Tropical cyclone wind profile model

(4) Wave effects (Wavewatch-3 Modeling)

(5) Typhoon effects on sea-to-air DMS transfer

(6) Summary
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1. DMS and Climate
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. DMS (CH,SCH.)

Dimethylsulfide (DMS) Cycle
Ocean and Atmosphere Exchange

changes the radiation

budget Iin the
atmosphere and In
turn changes the
climate.

Climatic Effects of Tropospheric Aerosol

Partial Reflection of
fncoming Solar Radiation

Sulfate Haze

€% Clouds 2. . &7
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The dominant natural source of

sulfur to the atmosphere 1s the
oceanic DMS

(Bates et al., 1992; Gondwe et al., 2003).
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2. Sea-to-Air DMS Flux
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Ca (DMS concentrations at airside) Air
m,=k,(C, - C;,/a) & M, (flux in airside)

Cs,w (concentration at the interface)

a — My

My= kw( CS,W B CW ) émw (flux in waterside)

Ocean
Cw (DMS concentrations at waterside)
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Ostwald Solubility Coefficient

2525
& = eEp 7 = 9.464]

- Representing ratio of C,, /C, at equilibrium

T 1n °K
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Sea-to-Air DMS Flux (H)
(McGillis et al., JGR 2000)

Eliminating C,,, =2

H= (C, - aC,)
1+.:x=‘.:u:
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Airside DMS Transfer Velocity Kk,

k, = 659 U, (M,,o/M)!"2

M -2 molecular weight of DMS -2 129.075
My, 2 molecular weight of H,O = 18

u. =u(z,) =2k,

Z,=10m
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« Waterside transfer
velocity (n=0.58)

e Schmidt Number = 720
(DMS at 300 K)

« DMS Diffusion coefficient
(Saltzman et al., 1993)

Roughness Reynolds
Number

Waterside DMS Transfer Velocity
(Jahne et al., 1987)

k, = o o, B8,
Sc=viD
D=1.1H1[]_2|3}:p[ 1896] (unit: cm fs]

8=055Re"

Fe,=uz, /v

UNCLASSIFIED



Z, 1s roughness length

. . _ ]
Nondimensional =  £p = Zg /i
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What 1s the effect of tropical
cyclones on the sea-to-air DMS
transfer?



UNCLASSIFIED

Tropical Cyclones
- Ocean Waves
-2 (z, U.) =2 k, 2 Sea-to-Air DMS Flux

————
apillary W-znrl:i
IR g g

Circular motion of water molecules
L f o
continues vertically undaraatar
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3. Tropical Cyclone Wind Profile Model
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Wind Decomposition

V=(-¢)V, +V,)+&V,

c* r

E = 4,C:
1+c 0.9R,

V. = Translation velocity

V. = relative velocity to storm
center

Ve 2 Background velocity

(Ry, R,,) = zero and maximum
tangential velocities

ur)

¥
v{r) \
kY

p
o
S
o
_'_'_r-‘

V=(1=2)(VHV)+ &V,

I
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Continuation of Kuo’s (1965) Work -

Tropical Cyclone Wind Profile Model (TCWPM)
(Carr and Elsberry 1997)

a.4

1-a’

fol g (Royx_
Vc(r)ZE[RO( r ) r}
u.(r) = tan(y)v,(r)

"
a=—
Rm

v = inflow angle of air as it spirals into the typhoon center

X =2 positive parameter (~ 0.4)
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Typhoon Muifa (2004)

TYPHOON 29W (MUIF A)
14 -26 NOV 2004
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Comparison between
NCEP and QSCAT-TCWPM (QTCWPM) Win
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4. Wave Eftects on Air-Sea Fluxes
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U4 Drag Coefficient without Ocean Waves J &, [t

CD - (u*/ur)2

u(z) = %ln [Z—ZOJ, Cp=—~

z.=10m

x =0.4 (von Karman Constant)
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Charnock (1955) Parameterization

Constant 2z, =0.0144

7, = 0.0144 u.2/g
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S Drag Coefficient with Ocean Waves >
Chalikov (1995) parameterization

Oy =t [R=-1nC, T

A=ln “r& _ 3/2
lon|  #=057UJC)

C, 1s the peak phase speed.
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NOAA WaveWatch-3
Third Generation Wave Model

(Tolman 1999)

N, 1 a¢°Ncos<9+i/iN+ikN+i6’gN:§

ot cos¢ 0¢ oA ok 00 o
S:Sin+Snl+Sds+Sbot

.:Cgcos«9+U¢ /i:Cgsin6’+U¢

R Rcos@

ég g C, tan g cosd
R
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South China Sea

Latitude (N)

%10 = 115 120 =
Longitude (E)
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Numerical Integration

* Spatial grid
 Latitude: 0° to 15°N, Longitude: 105° to 122°N
e Spatial Interval: 1/4° X 1/4 °
* Energy spectra
e 25 frequencies with logarithmic increment.
e 24 directions (15° interval)
* Time step
* Global step = Spatial step = Spectral step = 300 sec.
* Source step = 100 sec.
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Latitude

WaveWatch-3 was evaluated using T/P (a) crossover &g

points and (b) tracks in the SCS
(Chuetal., 2003, JTECH)
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TOPEX/Poseidon Altimetry

« T/P Satellite
 NASA and CNES cooperation project.
« August 1992 till now.
* 9.916 days repeat period.
e Dataset in use
« 00UTC 16 Nov. to 12UTC 25 Nov.
« 2 Cycles: 448, 449.

* 14 Passes: 001, 012, 051, 064, 077, 088
114,127,140, 153, 164, 216, 229.

« Total 25 crossover points.

Oos'E 110'E 115 E 120'E
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Evaluation Using
Significant Wave Height (H)

|
 Statistics ~ 2
» 38 data pairs ('T/P vs. WW3). ; 4| 5 o o
+ BIAS=0.137m. B G
- RMSE =0.308 m. T ooe
« Corr. Coeff. = 0.895. , S
* T/P observations and WW3 simulations S
are 1n a good agreement. N

e WW3 simulation in the SCS is accurate
and reasonable.

Frequency

Difference (m)
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Effects of Tropical Cyclone on Hg
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Comparison of Max. H, and Winds

Maximum Wave Field Maximum Wind Field

Along the typhoon track: to the right side;
expending wider to the right side.
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5. Typhoon Effect on Sea-to-Air DMS
Transfer
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Typhoon 23W (Wukong) Sept 5-11, 2000 $&%
© Maximum Sustained Wind: 38 m/s D)
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Nondimensional Peak Wave
Frequency

@, = @il g

10° =
-kNO 10'2 o }sc{ i..:
10°} e
10_4 - 3 I—2 1 0
10 10 10 10 10
®
P

UNCLASSIFIED



UNCLASSIFIED

Effect on Cy
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Relative Difference of Cy
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Effect onk,,

11 . ;

—— With WBL
- Without WBL

10.5

10

9.5

k (cm/h)

o
(8)
T

7-5 | 1 | | |
09/05 09/06 09/07 09/08 09/09 09/10 09/11
Date (Month/Day)

UNCLASSIFIED



UNCLASSIFIED

Relative Difference of k,,,
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Conclusions

* (1) WBL increases Cp and in turn enhances the momentum
negative feedback.

* (2) WBL decreases k, and 1n turn weakens the sea-to-air DMS
transfer = less sulfate haze, CCN -> air quality and climate

* (3) Such opposite WBL effects are evident for typhoon Wukong
(max wind ~ 38 m/s) = 13% reduction in Kk,

* (4) Such opposite WBL effects under tropical cyclones on the
climate should be further investigated.
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