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First-Passage Time (FPT)

Radius 

FPT Time when the particle 
first passes through the boundary. 



FPT in Climate Studies

• (1) Climate Index Prediction

• (2) Climate Model (or Ocean/Atmospheric 
Model) Predictability 



(1) Climate Index Prediction



Spatial Correlation of Surface 
Pressure of Djakarta (Berlage 1966)



Pdiff = pTahiti – pDawin

Southern Oscillation Index (SOI)



Positive SOI Sustained Negative SOI



Commonly Used Climate Indices 

• Arctic Oscillation (AO)

• Antarctic Oscillation 
(AAO)

• North Atlantic Oscillation 
(NAO)

• Pacific/North American 
Pattern (PNA) 

• Southern Oscillation 
Index (SOI)



Two Approaches Index Prediction

• Forward Method 
– Collette and Ausloos (2004)
– Lind et al. (2005)

• Backward Method
– Chu (2007) 



Forward Method

• Predicts the change of the index       at time 
t with a given temporal increment      .  

• Due to stochastic nature, the probability 
density function (PDF), should be first 
constructed.



PDFs of Monthly Mean Indices

• AO,    AAO

• NAO,  PNA

• SOI
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Example- NAO Index
• NAO describes a large-scale meridional

vacillation in atmospheric mass between the 
anticyclone over Azores and the subpolar low 
pressure system over Iceland. 

• Traditionally, the state of the NAO dipole system 
is characterized by an index, the so-called NAO 
index, which is basically the difference between 
the pressure at the high NAO pole (Azores) and 
the pressure at the low pole (Iceland). 



Example – NAO Index     (t)

• Collette and Ausloos (2004)  
– Brownian fluctuation

• Lind et al. (2005) (t) Langevin equation  

(D(1) ,, D(2)) (Drift, Diffusion)  Coefficients

is a Langevin force 
(     - correlated Gaussian noise).



Backward Method

• This method  predicts the typical time span 
(    ) needed to generate a fluctuation in 
the index of a given increment  (     ). 

• This method uses FPT.



FPT Problem
• Given a fixed value of an index reduction 
(    ), the corresponding time span (positive)
is estimated for which the index reduction  

reaches the level for the first time,  

which is called the FPT.  FPT is a random variable.



• PDF of FPT

• CDF of FPT



Moments of FPT



PDF of FPT (from index data) 
Inverse Gaussian Distribution 

• AO          AAO

• NAO             PNA

• SOI
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PDF of FPT 
(Analytical, Chu et al. 2002a)

• Backward Fokker-Planck equation 



Analytical Solution of the Backward 
Fokker-Planck Equation 

• For Brownian fluctuation (e.g., NAO monthly 
index, Collette and Ausloos 2004),  the 
backward Kokker-Planck Equation has analytical 
solution (Ding and Rangaranjian 1995)

• Inverse Gaussian Distribution
• The parameter ‘a’ depends on the index 

reduction 



Dependence of            on     
(SOI)

= -25  a = 3.14 = -30  a = 3.96



• Linear 
relationship 
between the 
parameter ‘a’ in 
the analytical 
PDF & the index 
reduction   

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5
(a)  ao:  a = 0.43 + 0.695*ρ

ρ

a

0 0.5 1 1.5 2
0.5

1

1.5

2
(b)  aao:  a = 0.508 + 0.562*ρ

ρ

a

0 0.5 1 1.5 2
0.4

0.6

0.8

1

1.2

1.4
(c)  nao:  a = 0.604 + 0.351*ρ

ρ

a

0 0.5 1 1.5 2
0.4

0.6

0.8

1

1.2

1.4
(d)  npa:  a = 0.6 + 0.373*ρ

ρ

a
0 10 20 30 40

0

1

2

3

4

5

6
(e)  soi:  a = 0.165 + 0.125*ρ

ρ

a
1 2a α α ρ= +



1α

0.1250.3730.3510.5620.696

0.1650.6000.6040.5080.430

SOPNANAOAAOAO

2α



• Empirical CDF of 
FPT  

for various values of
index reduction 

Power Law 



Mode of            Optimal FPT

= 2a2/3



Results
• FPT presents a new way to detect the temporal 

variability of the climate indices.  It predicts a typical time 
span (      ) needed to generate an index reduction of a 
given increment  (       ).

• FPTs for the five climate indices satisfy the inverse 
Gaussian distribution Brownian Fluctuation.

• can be used as most probable time period 
needed for the low-frequency atmospheric circulation 
pattern to sustain.

• Power-law features



(2) Climate Model 
Predictability



This question should be answered 
before running any model

• How long is an ocean (or atmospheric) 
model valid once being integrated from its 
initial state? 



Physical Reality

• Y 

• Physical Law: dY/dt = h(y, t)

• Initial Condition:  Y(t0) = Y0



– X is the prediction of Y

– d X/ dt = f(X, t) + q(t) X

– Initial Condition:  X(t0) = X0

– Stochastic Forcing:   
– <q(t)> = 0
– <q(t)q(t’)> = q2δ(t-t’)



Model Error

Z = X – Y

Initial:     Z0 = X0 - Y0



One Missing Parameter

• Tolerance Level   ε

• Maximum accepted  error 



FPT

• FPT is defined as the time period when 
the prediction error first exceeds a pre-
determined criterion (i.e., the tolerance 
level ε). 



FPT for Model Predictability

• FPT is defined as the 
time period when the 
prediction error first 
exceeds a pre-
determined criterion 
(i.e., the tolerance 
level ε). 



Conditional  Probability Density 
Function

• Initial Error:   Z0 

• (t – t0)  Random Variable

• Conditional  PDF of  (t – t0) with given Z0  

P[(t – t0) |Z0] 



Two Approaches

• Analytical  (low dimension dynamical 
system )

• Practical (operational atmospheric or 
ocean model)



Backward Fokker-Planck Equation



Moments



Example-1: Maximum Growing Maniford of 
Lorenz System (Nicolis, 1992)

•



Mean and Variance of FPT



Analytical Solutions 



Dependence of tau1 & tau2 on 
Initial Condition Error (           )



Example-2: Lorenz System (1984)
Modified Hadley Circulation



Sensitivity of PDF on the tolerance level and 
ensemble dimension: numerical (solid curve), 

analytic (dashed curve)

Ν=250,000

Ν=100

ε=0.1 ε=0.5



Dependence of FPT on Initial Error 
(Dx, Dy) for ε = 0.1

ηιγη πρεδιχταβιλιτψ
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Example-3 
Power Law Decay of Model 

Predictability Skill

Gulf of Mexico Prediction System



Gulf of Mexico Forecast System

• University of Colorado Version of POM
• 1/12o Resolution
• Real-Time SSH Data (TOPEX, ESA ERS-

1/2) Assimilated
• Real Time SST Data (MCSST, NOAA 

AVHRR) Assimilated
• Six Months Four-Times Daily Data From 

July 9, 1998 for Verification



Model Generated Velocity Vectors at 
50 m on 00:00 July 9, 1998



(Observational) Drifter  Data at 50 
m on 00:00 July 9, 1998



Error Mean and Variance

Error Mean 

Error Variance



Exponential Error Growth

Classical Linear  Theory

No Long-Term Predictability



Power Law

Long-Term Predictability May Occur



Statistical Characteristics of VPP for zero 
initial error and 22 km tolerance level 

(Non-Gaussion)



Scaling behavior of the 

mean error (L1) growth

for initial error levels:

(a) 0

(b) 2.2 km

(c) 22 km 



Scaling behavior of the 

Error variance (L2) growth

for initial error levels:

(a) 0

(b) 2.2 km

(c) 22 km 



Probability Density Function of VPP 
calculated with different tolerance levels

Non-Gaussian distribution

with long tail toward large

values of VPP (Long-term

Predictability)



The FPT analysis is usually 
conducted in the phase space.

Phase space representation



Results
• (1)  FPT is  an effective prediction skill measure (scalar). 

• (2) Theoretical framework for FPT (such as Backward 
Fokker-Planck equation) can be directly used for model 
predictability study.

• (3) Spectral method is an effective way to transfer the 
data from the physical space into phase space 
(theoretical and practical significances).


