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Part-1 Optimal Spectral Decomposition 
(OSD)
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Observational Data (Sparse 
and Noisy)



Most Popular Method for Ocean Data 
Analysis: Optimum Interpolation (OI)



Three Necessary Conditions For 
the OI Method

(1) First guess field

(2) Autocorrelation functions

(3) Low noise-to-signal ratio



Ocean velocity data

(1)  First guess field (?)

(2)  Unknown autocorrelation function

(3) High noise-to-signal ratio 



It is not likely to use the OI 
method to process ocean velocity 
data. 



Spectral Representation - a 
Possible Alternative Method



Two approaches to obtain 
basis functions

EOFs

Eigenfunctions of Laplace Operator   



Spectral Representation for 
Velocity



Flow Decomposition

2 D Flow  (Helmholtz)

3D Flow (Toroidal & Poloidal): Very 
popular in astrophysics



3D Incompressible Flow 
When     

We have 



Flow Decomposition



Boundary Conditions



Basis Functions (Closed Basin)



Basis Functions 
(Open Boundaries)



Spectral Decomposition



Optimal Mode Truncation 



Vapnik (1983) Cost Function



Optimal Truncation 

Gulf of Mexico, Monterey Bay, 
Louisiana-Texas Shelf

Kopt = 40, Mopt = 30



Determination of Spectral Coefficients (Ill-
Posed Algebraic Equation)



Rotation Method  (Chu et al., 2004)



Part-2  Application in Data 
Analysis 
Current Reversal in Louisiana-Texas 
Continental Shelf (LTCS)



Reference
Chu, P.C., L.M. Ivanov, and O.V. Melnichenko, 2004: 
Fall-winter current reversals on the Taxes-Lousiana
continental shelf, Journal of Physical Oceanography, 
in press.



Ocean Velocity Data 
31 near-surface (10-14 m) current 
meter moorings during LATEX from 
April 1992 to November 1994 

Drifting buoys deployed at the first 
segment of the Surface Current and 
Lagrangian-drift Program (SCULP-I) 
from October 1993 to July 1994.



Surface Wind Data

7 buoys of the National Data Buoy 
Center (NDBC) and industry (C-
MAN) around LATEX area



Moorings  and Buoys 



Reconstructed and observed 
circulations at Station-24. 



LTCS current reversal detected 
from SCULP-I drift trajectories. 



Probability of TLCS Current Reversal 
for Given Period (T) 

n0 ~0-current 
reversal 
n1~ 1-current 
reversal
n2~ 2-current 
reversals
m ~ all realizations



Fitting the Poison Distribution

µ is the mean number of reversal for a single time interval

µ ~ 0.08



Dependence of 
P0, P1, P2 on T

For observational periods 
larger than 20 days,  
the probability for no current
reversal is less than 0.2. 

For 15 day observational period, 
the probability for 1-reversal 
reaches 0.5

Data – Solid Curve
Poison Distribution Fitting –
Dashed Curve



Time Interval between Successive 
Current Reversals (not a Rare Event)



LTCS current reversal detected from 
the reconstructed velocity data

December 30, 1993

January 3, 1994

January 6, 1994



EOF Analysis of the 
Reconstructed Velocity Filed
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Mean and First EOF Mode



Mean Circulation

1. First Period 
(01/21-05/21/93)

2. Second Period   
12/19/93-
04/17/94)

3. Third Period 
(10/05-11/29/94)



EOF1

1. First Period 
(01/21-05/21/93)

2. Second Period   
12/19/93-04/17/94)

3. Third Period 
(10/05-11/29/94)



Calculated A1(t) 
Using Current Meter 
Mooring (solid)
and SCULP-1
Drifters (dashed)



8 total reversals 
observed 

Uals ~ alongshore 
wind



Morlet Wavelet

A1(t)

Uals



Regression between
A1(t) and Surface 
Winds 

Solid Curve 
(reconstructed)
Dashed Curve 
(predicted using 
winds)



Part-3  
Application in Modeling 



How Long Can a Model 
Predict? 
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Physical Reality

Y 

Physical Law: dY/dt = h(y, t)

Initial Condition:  Y(t0) = Y0



Atmospheric & Oceanic Models 

X is the prediction of Y

d X/ dt = f(X, t) + q(t) X

Initial Condition:  X(t0) = X0

Stochastic Forcing:   
<q(t)> = 0
<q(t)q(t’)> = q2δ(t-t’)



Model Error

Z = X – Y

Initial:     Z0 = X0 - Y0



Valid Prediction Period (VPP)

VPP is defined as the time period when 
the prediction error first exceeds a pre-
determined criterion (i.e., the tolerance 
level ε). 

VPP is the First-Passage Time



VPP



Conditional  Probability Density 
Function

Initial Error:   Z0 

(t – t0)  Random Variable

Conditional  PDF of  (t – t0) with given Z0 

P[(t – t0) |Z0] 



Two Approaches to Obtain 
PDF of VPP 

Analytical  (Backward Fokker-Planck 
Equation)

Practical    (Optimum Spectral Analysis) 



Analytical Approach

Backward Fokker-Planck Equation



Backward Fokker-Planck Equation

Model Physics Stochastic Forcing



Moments



Example: One Dimensional Error 
(Nicolis 1992), Population (ecology), or 
General Production (economics) Models

1D Dynamical System (Maximum Growing 
Maniford of Lorenz System)



Mean and Variance of VPP



Analytical Solutions 



Dependence of tau1 & tau2 on 
Initial Condition Error (           )



Practical Approach

Optimum Spectral Decomposition 
(OSD) 



Gulf of Mexico Forecast 
System

University of Colorado Version of POM
1/12o Resolution
Real-Time SSH Data (TOPEX, ESA ERS-
1/2) Assimilated
Real Time SST Data (MCSST, NOAA 
AVHRR) Assimilated
Six Months Four-Times Daily Data From 
July 9, 1998 for Verification



Model Generated Velocity Vectors 
at 50 m on 00:00 July 9, 1998



(Observational) Drifter  Data at 
50 m on 00:00 July 9, 1998



Reconstructed Drift Data at 50 m on 
00:00 July 9, 1998 Using the OSD Method 
(Chu et al. 2002 a, b, JTECH)



Error Mean and Variance

Error Mean 

Error Variance



Exponential Error Growth

Classical Linear  Theory

No Long-Term Predictability



Power Law

Long-Term Predictability May Occur



Statistical Characteristics of VPP



Predictability Tube



Conclusions
OSD is a useful tool for processing real-time velocity 
data with short duration and  limited-area sampling.

The scheme can handle highly noisy data.

The scheme is model independent.

The scheme can be used for velocity data 
assimilation.

Phase Space Consideration


